储能科学与技术 ›› 2025, Vol. 14 ›› Issue (8): 2994-3003.doi: 10.19799/j.cnki.2095-4239.2025.0522
• 短时高频高功率储能专辑 • 上一篇
苏新凯(), 赵璐璐(
), 陈彦桥, 王础, 陈换军, 金翼
收稿日期:
2025-06-06
修回日期:
2025-06-27
出版日期:
2025-08-28
发布日期:
2025-08-18
通讯作者:
赵璐璐
E-mail:20082058@ceic.com;20019029@ceic.com
作者简介:
苏新凯(1996—),男,硕士,研究方向为储能系统规划,E-mail:20082058@ceic.com;
基金资助:
Xinkai SU(), Lulu ZHAO(
), Yanqiao CHEN, Chu WANG, Huanjun CHEN, Yi JIN
Received:
2025-06-06
Revised:
2025-06-27
Online:
2025-08-28
Published:
2025-08-18
Contact:
Lulu ZHAO
E-mail:20082058@ceic.com;20019029@ceic.com
摘要:
我国能源结构转型背景下,新型电力系统对储能器件“快速响应-高频调节-本质安全”的需求日益凸显,超级电容作为典型功率型储能器件,因高功率密度、长循环寿命、宽温域工作能力及无枝晶生长导致的安全隐患等优势,逐渐受到广泛关注。本文系统综述其技术体系与应用进展。在单体研发方面,从双电层超级电容和混合型超级电容两类型出发,分析其典型现有技术路线与产品性能。在集成应用方面,论述超级电容在风机变桨系统、新能源配储、火储联合调频、独立储能、交通等领域的应用,并简述了如吊机等动力机械动能回收、数据中心后备电源、电力设备等其他场景的应用情况。最后,分析超级电容目前在能量密度、全寿命周期成本、应用场景等方面存在的瓶颈,判断未来研究重点将集中在开发新型材料体系、推动应用场景多元化以及“超级电容+”混合储能模式创新等三方面,需要通过体系与场景创新,以差异化的产品支撑超级电容在新型电力系统建设中更广泛的商业化应用。
中图分类号:
苏新凯, 赵璐璐, 陈彦桥, 王础, 陈换军, 金翼. 超级电容产业化研究与应用综述[J]. 储能科学与技术, 2025, 14(8): 2994-3003.
Xinkai SU, Lulu ZHAO, Yanqiao CHEN, Chu WANG, Huanjun CHEN, Yi JIN. Review of the research on industrialization and applications of supercapacitors[J]. Energy Storage Science and Technology, 2025, 14(8): 2994-3003.
[1] | 方晓佳, 蔡英鹏, 陈锦活. 超级电容器的研究进展及发展趋势[J]. 农村电气化, 2022(6): 90-92. DOI: 10.13882/j.cnki.ncdqh.2022.06.025. |
FANG X J, CAI Y P, CHEN J H. Research progress and development trend of supercapacitors[J]. Rural Electrification, 2022(6): 90-92. DOI: 10.13882/j.cnki.ncdqh.2022.06.025. | |
[2] | MILLER J R, SIMON P. Electrochemical capacitors for energy management[J]. Science, 2008, 321(5889): 651-652. DOI: 10. 1126/science.1158736. |
[3] | 梁雨晖, 陈德珍. 用于超级电容器的生物炭电极材料性能研究进展[J]. 新能源进展, 2025, 13(1): 51-68. |
LIANG Y H, CHEN D Z. Research progress on properties of bio-carbon electrode materials for supercapacitors[J]. Advances in New and Renewable Energy, 2025, 13(1): 51-68. | |
[4] | PANDOLFO A G, HOLLENKAMP A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157(1): 11-27. DOI: 10.1016/j.jpowsour.2006.02.065. |
[5] | KÖTZ R, CARLEN M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15/16): 2483-2498. DOI: 10.1016/S0013-4686(00)00354-6. |
[6] | YU Z N, TETARD L, ZHAI L, et al. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions[J]. Energy & Environmental Science, 2015, 8(3): 702-730. DOI: 10.1039/C4EE03229B. |
[7] | WANG Y G, SONG Y F, XIA Y Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950. DOI: 10.1039/C5CS00580A. |
[8] | 国家能源局. 电力储能用超级电容器: DL/T 2080—2020[S]. 北京: 中国电力出版社, 2021. |
National Energy Bureau of the People's Republic of China. Super capacitor for electrical energy storage: DL/T 2080—2020[S]. Beijing: China Electric Power Press, 2021. | |
[9] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 超级电容器 第1部分:总则: GB/T 34870.1—2017[S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Super capacitors: Part 1: General: GB/T 34870.1—2017[S]. Beijing: Standards Press of China, 2017. | |
[10] | 中华人民共和国工业和信息化部. 车用超级电容器: QC/T 741—2014[S]. 北京: 中国计划出版社, 2015. |
Ministry of Industry and Information of the People's Republic of China. Ultra-capacitor for Electric Vehicles: QC/T 741—2014[S]. Beijing: China Planning Press, 2015. | |
[11] | 向宇, 曹高萍. 双电层电容器储能机理研究概述[J]. 储能科学与技术, 2016, 5(6): 816-827. DOI: 10.12028/j.issn.2095-4239.2016.0088. |
XIANG Y, CAO G P. A review on the mechanism of the energy storage about the electrochemical double-layer capacitors[J]. Energy Storage Science and Technology, 2016, 5(6): 816-827. DOI: 10.12028/j.issn.2095-4239.2016.0088. | |
[12] | LIU C, LI F, MA L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): E28-E62. DOI: 10.1002/adma.200903328. |
[13] | 袁丹丹, 王林, 尚随军. 赝电容型超级电容器电极材料的研究进展[J]. 电池工业, 2023, 27(4): 199-204. DOI: 10.19996/j.cnki.ChinBatlnd. 2023.04.008. |
YUAN D D, WANG L, SHANG S J. Research progress of electrode materials for supercapacitors based on pseudocapacitors[J]. Chinese Battery Industry, 2023, 27(4): 199-204. DOI: 10. 19996/j.cnki.ChinBatlnd.2023.04.008. | |
[14] | 张若萱, 时志强. 超级电容器用低温电解液研究进展[J]. 山东化工, 2024, 53(19): 144-146, 149. DOI: 10.19319/j.cnki.issn.1008-021x.2024.19.038. |
ZHANG R X, SHI Z Q. Research progress in low temperature electrolyte for supercapacitors[J]. Shandong Chemical Industry, 2024, 53(19): 144-146, 149. DOI: 10.19319/j.cnki.issn.1008-021x.2024.19.038. | |
[15] | 钟斌, 武长城. 超级电容器用有机电解质盐的研究进展[J]. 山东化工, 2024, 53(19): 121-123. DOI: 10.19319/j.cnki.issn.1008-021x.2024.19.032. |
ZHONG B, WU C C. Research progress on organic electrolyte salts for supercapacitors[J]. Shandong Chemical Industry, 2024, 53(19): 121-123. DOI: 10.19319/j.cnki.issn.1008-021x.2024.19.032. | |
[16] | WANG Y G, SONG Y F, XIA Y Y. ChemInform abstract: Electrochemical capacitors: Mechanism, materials, systems, characterization and applications[J]. ChemInform, 2016, 47(50): DOI: 10.1002/chin.201650247. |
[17] | POMERANTSEVA E, BONACCORSO F, FENG X L, et al. Energy storage: The future enabled by nanomaterials[J]. Science, 2019, 366(6468): eaan8285. DOI: 10.1126/science.aan8285. |
[18] | 陈雪丹, 陈硕翼, 乔志军, 等. 超级电容器的应用[J]. 储能科学与技术, 2016, 5(6): 800-806. DOI: 10.12028/j.issn.2095-4239.2016.0047. |
CHEN X D, CHEN S Y, QIAO Z J, et al. Applications of supercapacitors[J]. Energy Storage Science and Technology, 2016, 5(6): 800-806. DOI: 10.12028/j.issn.2095-4239.2016.0047. | |
[19] | 唐西胜, 齐智平. 独立光伏系统中超级电容器蓄电池有源混合储能方案的研究[J]. 电工电能新技术, 2006, 25(3): 37-41, 67. DOI: 10.3969/j.issn.1003-3076.2006.03.010. |
TANG X S, QI Z P. Study on an actively controlled battery/ultracapacitor hybrid in stand-alone PV system[J]. Advanced Technology of Electrical Engineering and Energy, 2006, 25(3): 37-41, 67. DOI: 10.3969/j.issn.1003-3076.2006.03.010. | |
[20] | 刘剑, 田炜, 鲁斌, 等. 基于超级电容的海上风电机组电动变桨系统设计[J]. 可再生能源, 2014, 32(10): 1474-1478. DOI: 10.13941/j.cnki.21-1469/tk.2014.10.011. |
LIU J, TIAN W, LU B, et al. Design of offshore wind turbine electric pitch system based on supercapacitor[J]. Renewable Energy Resources, 2014, 32(10): 1474-1478. DOI: 10.13941/j.cnki.21-1469/tk.2014.10.011. | |
[21] | 沈鑫, 田炜, 鲁斌, 等. 电动变桨距系统超级电容后备电源测试装置设计与应用[J]. 电器与能效管理技术, 2014(20): 78-82. DOI: 10.16628/j.cnki.2095-8188.2014.20.018. |
SHEN X, TIAN W, LU B, et al. Test equipment research and design of backup power based on supercapacitor for electric pitch system[J]. Electrical & Energy Management Technology, 2014(20): 78-82. DOI: 10.16628/j.cnki.2095-8188.2014.20.018. | |
[22] | 于洪波. 大型风电机组变桨系统超级电容选择和自检策略[C]//2018年(第四届)风电场运行维护及后评价专题交流研讨会论文集, 2018: 77-80. |
YU H B. Selection and self-checking control strategy of supercapacitors for pitch control system of large wind turbines[C]//Proceedings of the 4th Symposium on Operation, Maintenance, and Post-Evaluation of Wind Farms, 2018: 77-80. | |
[23] | 张晓虎, 张熊, 王凯, 等. 功率型储能技术与应用综述[J]. 电气工程学报, 2024, 19(3): 385-398. |
ZHANG X H, ZHANG X, WANG K, et al. Review of power-type energy storage technology and application[J]. Journal of Electrical Engineering, 2024, 19(3): 385-398. | |
[24] | 庞家猛, 张颖, 刘红文, 等. 实际风电场应用的"一机一储" 系统设计及仿真研究[J]. 控制与信息技术, 2025(1): 71-77. DOI: 10.13889/j.issn.2096-5427.2025.01.011. |
PANG J M, ZHANG Y, LIU H W, et al. Design and simulation of the "one WT-one ES" system for practical applications at wind farms[J]. Control and Information Technology, 2025(1): 71-77. DOI: 10.13889/j.issn.2096-5427.2025.01.011. | |
[25] | 黄策, 燕云飞, 沈迎, 等. 超容储能辅助火电机组调频的电气问题研究[J]. 电气技术, 2022, 23(8): 103-108. |
HUANG C, YAN Y F, SHEN Y, et al. Research on electrical problems of frequency modulation of thermal power unit assisted by supercapacitor energy storage[J]. Electrical Engineering, 2022, 23(8): 103-108. | |
[26] | 王莉, 谢乐琼, 张干, 等. 锂离子电池一致性筛选研究进展[J]. 储能科学与技术, 2018, 7(2): 194-202. |
WANG L, XIE L Q, ZHANG G, et al. Research progress in the consistency screening of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(2): 194-202. | |
[27] | 王伟, 陈钢, 常东锋, 等. 超级电容辅助燃煤机组快速调频技术研究[J]. 热力发电, 2020, 49(8): 111-116. DOI: 10.19666/j.rlfd.202003091. |
WANG W, CHEN G, CHANG D F, et al. Super capacitor aided fast frequency modulation technology of coal-fired unit[J]. Thermal Power Generation, 2020, 49(8): 111-116. DOI: 10.19666/j.rlfd.202003091. | |
[28] | 高明非, 张策, 解彤, 等. 考虑风光消纳的综合能源系统多元储能优化配置方法[J]. 动力工程学报, 2023, 43(6): 796-804. DOI: 10.19805/j.cnki.jcspe.2023.06.017. |
GAO M F, ZHANG C, XIE T, et al. Multiple energy storage optimal configuration method for comprehensive energy system considering wind/photovoltaic power accommodation[J]. Journal of Chinese Society of Power Engineering, 2023, 43(6): 796-804. DOI: 10.19805/j.cnki.jcspe.2023.06.017. | |
[29] | 宋杰, 耿林霄, 桑永福, 等. 基于EMD分解的混合储能辅助火电机组一次调频容量规划[J]. 储能科学与技术, 2023, 12(2): 496-503. DOI: 10.19799/j.cnki.2095-4239.2022.0588. |
SONG J, GENG L X, SANG Y F, et al. Study on primary frequency modulation capacity planning of thermal power unit assisted by hybrid energy storage based on EMD decomposition[J]. Energy Storage Science and Technology, 2023, 12(2): 496-503. DOI: 10.19799/j.cnki.2095-4239.2022.0588. | |
[30] | 李欣然, 周婷婷, 黄际元. 跟踪风电计划出力下的混合储能系统容量配置[J]. 太阳能学报, 2016, 37(9): 2194-2200. DOI: 10.3969/j.issn.0254-0096.2016.09.004. |
LI X R, ZHOU T T, HUANG J Y. The hybrid energy storage system capacity configuration in tracking wind power project output[J]. Acta Energiae Solaris Sinica, 2016, 37(9): 2194-2200. DOI: 10.3969/j.issn.0254-0096.2016.09.004. | |
[31] | 汤杰, 李欣然, 黄际元, 等. 以净效益最大为目标的储能电池参与二次调频的容量配置方法[J]. 电工技术学报, 2019, 34(5): 963-972. DOI: 10.19595/j.cnki.1000-6753.tces.l80372. |
TANG J, LI X R, HUANG J Y, et al. Capacity allocation of BESS in secondary frequency regulation with the goal of maximum net benefit[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 963-972. DOI: 10.19595/j.cnki.1000-6753.tces.l80372. | |
[32] | 张野, 郭力, 贾宏杰, 等. 基于电池荷电状态和可变滤波时间常数的储能控制方法[J]. 电力系统自动化, 2012, 36(6): 34-38, 62. DOI: 10.7500/aeps201104074. |
ZHANG Y, GUO L, JIA H J, et al. An energy storage control method based on state of charge and variable filter time constant[J]. Automation of Electric Power Systems, 2012, 36(6): 34-38, 62. DOI: 10.7500/aeps201104074. | |
[33] | 熊雄, 王江波, 杨仁刚, 等. 微电网中混合储能模糊自适应控制策略[J]. 电网技术, 2015, 39(3): 677-681. DOI: 10.13335/j.1000-3673.pst.2015.03.014. |
XIONG X, WANG J B, YANG R G, et al. A fuzzy adaptive control strategy for composite energy storage system to cope with output power fluctuation of intermittent energy source in microgrid[J]. Power System Technology, 2015, 39(3): 677-681. DOI: 10.13335/j.1000-3673.pst.2015.03.014. | |
[34] | 李逢兵, 谢开贵, 张雪松, 等. 基于锂电池充放电状态的混合储能系统控制策略设计[J]. 电力系统自动化, 2013, 37(1): 70-75. |
LI F B, XIE K G, ZHANG X S, et al. Control strategy design for hybrid energy storage system based on charge/discharge status of lithium-ion battery[J]. Automation of Electric Power Systems, 2013, 37(1): 70-75. | |
[35] | 张卓远, 范志强, 焦晓峰, 等. 协同考虑调频性能及电池寿命的火储联合系统分层控制策略[J]. 华北电力大学学报(自然科学版), 2024, 51(6): 76-83. DOI: 10.3969/j.ISSN.1007-2691.2024.06.09. |
ZHANG Z Y, FAN Z Q, JIAO X F, et al. Hierarchical control strategy of combined fire storage system regarding frequency modulation performance and battery life[J]. Journal of North China Electric Power University (Natural Science Edition), 2024, 51(6): 76-83. DOI: 10.3969/j.ISSN.1007-2691.2024.06.09. | |
[36] | 耿察民, 杨小龙, 王亚欧, 等. 火储联合调峰调频供热系统协同控制研究[J]. 汽轮机技术, 2023, 65(6): 455-460. |
GENG C M, YANG X L, WANG Y O, et al. Research on coordinated control of power plant integrated with molten salt storage for peak load regulation and frequency control and heat supply[J]. Turbine Technology, 2023, 65(6): 455-460. | |
[37] | 国家发展改革委办公厅. 国家发展改革委办公厅关于印发«绿色低碳先进技术示范项目清单(第二批)»的通知[EB/OL]. [2024-04-16]. https://www.ndrc.gov.cn/xwdt/tzgg/202504/t20250428_1397462_ext.html. |
[38] | 国家能源投资集团有限责任公司. 国内首个混合构网型储能项目并网运行[EB/OL]. [2025-03-10]. https://article.xuexi.cn/articles/index.html art_id=2018667275150890757. |
[39] | 江楠梅. 电动汽车锂电池/超级电容混合储能系统能量管理策略[D]. 广州: 华南理工大学, 2023. DOI: 10.27151/d.cnki.ghnlu.2023.004666. |
JIANG N M. Energy management strategy for lithium battery/ultracapacitor hybrid energy storage system in electric vehicles[D]. Guangzhou: South China University of Technology, 2023. DOI: 10.27151/d.cnki.ghnlu.2023.004666. | |
[40] | 兰笠夫. 城市轨道交通地面式超级电容储能系统节能及稳压控制研究[D]. 北京: 北京交通大学, 2022. DOI: 10.26944/d.cnki.gbfju. 2022.002450. |
LAN L F. Energy-saving and voltage regulation effect improvement of supercapacitor energy storage systems in urban rail transit[D]. Beijing: Beijing Jiaotong University, 2022. DOI: 10.26944/d.cnki.gbfju.2022.002450. | |
[41] | Capacitive energy storage system (CESS)[EB/OL]. [2025-04-24]. https://cn.flex.com/resources/capacitive-energy-storage-system-cess. |
[1] | 范亚锋, 易宗琳, 谢莉婧, 李晓明, 苏方远. 基于一阶RC模型的高频超级电容器电容成分分析[J]. 储能科学与技术, 2025, 14(8): 2903-2912. |
[2] | 胡力月, 黄威, 周云, 周英强, 邵常政, 王柯. 基于模糊推理的储能系统锂离子电池模组热扩散概率评估方法[J]. 储能科学与技术, 2025, 14(7): 2662-2674. |
[3] | 李源, 赵明智, 徐玉杰, 蔡杰. 液态二氧化碳储能系统变工况运行特性[J]. 储能科学与技术, 2025, 14(7): 2761-2771. |
[4] | 杨儒松, 侯朝霞, 李伟, 王颢然, 高旭, 龙海波. PANI/MnO2/rGO-P三元复合电极的制备及在超级电容器中的应用[J]. 储能科学与技术, 2025, 14(7): 2791-2800. |
[5] | 张晓慧, 杨瑞赓, 焦松坤. 基于机器学习的储能系统容量规划与需求预测研究[J]. 储能科学与技术, 2025, 14(7): 2881-2883. |
[6] | 赵云鹏, 李彦芳, 崔昕浩, 孙海燕, 滕莹雪. 原位氮掺杂石墨烯的制备及超级电容器性能研究[J]. 储能科学与技术, 2025, 14(6): 2270-2277. |
[7] | 陈勋. 基于深度强化学习的储能系统能量管理与优化调度策略[J]. 储能科学与技术, 2025, 14(6): 2439-2441. |
[8] | 肖俊阳, 罗金阁, 马伟哲, 程武平, 曾通. 基于改进人工蜂群算法的配电系统储能优化控制策略[J]. 储能科学与技术, 2025, 14(6): 2567-2574. |
[9] | 闫震, 刘强, 李会彬, 张俊, 蒋亚辉. 基于混合储能荷电状态的光伏微网功率优化管理方法[J]. 储能科学与技术, 2025, 14(5): 2067-2077. |
[10] | 许庆祥, 滕伟, 秦润, 宋顺一, 柳亦兵, 梁双印. 电网调频飞轮储能系统并网能量管理与控制策略[J]. 储能科学与技术, 2025, 14(5): 2013-2022. |
[11] | 鄢冰, 许浒, 李震领. 大数据支持下的储能系统智能运维模式研究[J]. 储能科学与技术, 2025, 14(5): 2010-2012. |
[12] | 徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 邸会芳, 王振兵. 干法电极技术在超级电容器和锂离子电池中的研究进展[J]. 储能科学与技术, 2025, 14(4): 1445-1460. |
[13] | 李石明. 人工智能在储能系统故障检测中的应用[J]. 储能科学与技术, 2025, 14(4): 1698-1700. |
[14] | 高天, 王祖凡, 方舒扬, 张佑康, 张连成, 黄永章, 赵海森. 含齿轮变速与链式传动机构的斜坡重力储能系统能效分析模型与实验验证[J]. 储能科学与技术, 2025, 14(2): 688-698. |
[15] | 黄怀宇, 黄思林, 赵荣超, 肖质文, 侯军辉, 闫力玮. 磷酸铁锂电池铝塑膜壳体绝缘失效触发热失控特性实验研究[J]. 储能科学与技术, 2025, 14(2): 613-623. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||