储能科学与技术

• •    

基于一阶RC模型的高频超级电容器电容成分分析

范亚锋(), 易宗琳, 谢莉婧, 李晓明, 苏方远()   

  1. 中国科学院山西煤炭化学研究所,炭材料山西省重点实验室,山西 太原 030001
  • 收稿日期:2025-05-16 修回日期:2025-06-13
  • 通讯作者: 苏方远 E-mail:fanyafeng@sxicc.ac.cn;sufangyuan@sxicc.ac.cn
  • 作者简介:范亚锋(1997—),男,博士,助理研究员,研究方向为储能炭材料,E-mail:fanyafeng@sxicc.ac.cn
  • 基金资助:
    National Key Research and Development (R&D) Program of China(2022YFF0609802);National Natural Science

Capacitor composition analysis of high-frequency supercapacitors based on first-order RC model

Yafeng FAN(), Zonglin Yi, Lijing Xie, Xiaoming Li, Fangyuan SU()   

  1. Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
  • Received:2025-05-16 Revised:2025-06-13
  • Contact: Fangyuan SU E-mail:fanyafeng@sxicc.ac.cn;sufangyuan@sxicc.ac.cn

摘要:

电化学阻抗谱(EIS)作为表征电极材料及电化学储能器件动力学行为的核心工具,可有效解析高频超级电容器中电荷转移与物质传输的耦合过程。为定量解析高频电容成分,本工作首先利用一阶RC模型提取电化学阻抗谱中能准确反应高频超级电容器性能的特征参数,随后将实测EIS数据作为特征输入参量,利用遗传算法对电容组分进行全局优化拟合,实现高频电容成分的定量解耦。为了验证该方法的普适性,选取石墨烯膜、碳纳米管膜、炭化三聚氰胺泡沫及商业化YP50F多孔炭为模型电极,开展高频EIS测试,并基于实测EIS数据开展电容成分分析。分析结果表明,高频电容呈现多弛豫特性:能量存储过程可解耦为CDebyeCHN,及CRBM弛豫过程,同时阐明弱短程离子相互作用是超级电容器优异高频响应性能的关键参数。本研究揭示了高频超级电容器电容成分的物理起源,所提出的分析方法为高频超级电容器材料筛选与界面工程提供了理论工具。

关键词: 超级电容器, 高频行为, 电化学阻抗谱, 遗传算法, 电容成分

Abstract:

Electrochemical impedance spectroscopy (EIS) serves as a cornerstone technique for elucidating the dynamic interplay within electrode materials and electrochemical energy storage systems, offering unparalleled insights into the coupled mechanisms of charge transfer and ionic transport in high-frequency supercapacitors. To enable precise quantification of high-frequency capacitance components, this study employs a first-order RC equivalent circuit model to extract discriminative electrochemical parameters from impedance spectra that correlate with device performance. The extracted parameters are subsequently integrated as input variables into a genetic algorithm-driven optimization framework, which performs global parameter fitting to achieve quantitative decoupling of distinct capacitance contributions. To validate the methodological robustness and universality of this approach, four representative electrode systems—graphene film, carbon nanotube film, carbonized melamine foam, and commercial YP50F porous carbon—were systematically investigated through high-frequency EIS characterization. Capacitance decomposition analysis, based on the acquired impedance datasets, revealed that high-frequency capacitance behavior exhibits multi-relaxation dynamics, which can be resolved into three distinct contributions: CDebye, CHN, and CRBM relaxation processes. Notably, the dominance of weak short-range ionic interactions was identified as the critical determinant governing the superior high-frequency response characteristics observed in these supercapacitor systems. These findings unravel the fundamental physical origins underpinning the capacitance composition in high-frequency supercapacitors. The proposed integrated analysis methodology provides a robust theoretical framework for accelerating material optimization and interface engineering strategies tailored for high-frequency supercapacitors.

Key words: supercapacitors, high-frequency behavior, electrochemical impedance spectroscopy, genetic algorithm, capacitor composition

中图分类号: