1 |
Li C, Li X, Liu G, et al. Microcrack Arrays in Dense Graphene Films for Fast-Ion-Diffusion Supercapacitors[J]. Small, 2023: 2301533.
|
2 |
Wu M, Sun K, He J, et al. Hierarchically 3D Fibrous Electrode for High-Performance Flexible AC-Line Filtering in Fluctuating Energy Harvesters[J]. Advanced Functional Materials, 2023: 2305039.
|
3 |
Zhang C, Jiao X, Wang Y, et al. An ultra-low-temperature alternating current filter[J]. Small, 2024, 20(2): 2305949.
|
4 |
Li Z, Xu M, Xia Y, et al. High-frequency supercapacitors surpassing dynamic limit of electrical double layer effects[J]. Nature Communications, 2025, 16(1): 3704.
|
5 |
Li Q, Sun S, Smith A D, et al. Compact and low loss electrochemical capacitors using a graphite/carbon nanotube hybrid material for miniaturized systems[J]. Journal of Power Sources, 2019, 412: 374-383.
|
6 |
Han F, Qian O, Meng G, et al. Structurally integrated 3D carbon tube grid-based high-performance filter capacitor[J]. Science, 2022, 377(6609): 1004-1007.
|
7 |
M. Santhosh N, Upadhyay K K, Filipič G, et al. Widening the limit of capacitance at high frequency for AC line-filtering applications using aqueous carbon-based supercapacitors[J]. Carbon, 2023, 203: 686-694.
|
8 |
Sun Q, Cao Z, Ma Z, et al. Dipole–Dipole Interaction Induced Electrolyte Interfacial Model To Stabilize Antimony Anode for High-Safety Lithium-Ion Batteries[J]. ACS Energy Letters, 2022, 7(10): 3545-3556.
|
9 |
Forse A C, Griffin J M, Merlet C, et al. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy[J]. Nature Energy, 2017, 2(3): 16216.
|
10 |
Yu J, Yu C, Song X, et al. Microscopic-Level Insights into Solvation Chemistry for Nonsolvating Diluents Enabling High-Voltage/Rate Aqueous Supercapacitors[J]. Journal of the American Chemical Society, 2023, 145(25): 13828-13838.
|
11 |
Zhang K, Zhou G, Fang T, et al. Different shapes based on ionic liquid leading to a two-stage discharge process[J]. Journal of Materials Chemistry A, 2022, 10(14): 7684-7693.
|
12 |
Lasia A. Impedance of porous electrodes[J]. Journal of Electroanalytical Chemistry, 1995, 397(1-2): 27-33.
|
13 |
Paasch G, Micka K, Gersdorf P. Theory of the electrochemical impedance of macrohomogeneous porous electrodes[J]. Electrochimica Acta, 1993, 38(18): 2653-2662.
|
14 |
Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, et al. Anomalous transport effects in the impedance of porous film electrodes[J]. Electrochemistry Communications, 1999, 1(9): 429-435.
|
15 |
Gaberšček M. Understanding Li-based battery materials via electrochemical impedance spectroscopy[J]. Nature Communications, 2021, 12(1): 6513.
|
16 |
Gu C, Yin L, Li S, et al. Differential capacitance of ionic liquid and mixture with organic solvent[J]. Electrochimica Acta, 2021, 367: 137517.
|
17 |
Zhang Q, Liu X, Yin L, et al. Electrochemical impedance spectroscopy on the capacitance of ionic liquid–acetonitrile electrolytes[J]. Electrochimica Acta, 2018, 270: 352-362.
|
18 |
Drüschler M, Huber B, Roling B. On capacitive processes at the interface between 1-Ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and Au(111)[J]. The Journal of Physical Chemistry C, 2011, 115(14): 6802-6808.
|
19 |
Sangoro J, Cosby T, Kremer F. Rotational and Translational Diffusion in Ionic Liquids[M]. Paluch M. Dielectric Properties of Ionic Liquids. Cham: Springer International Publishing, 2016: 29-51.
|
20 |
Dyre J C, Schrøder T B. Universality of ac conduction in disordered solids[J]. Reviews of Modern Physics, 2000, 72(3): 873-892.
|
21 |
Schönhals A, Kremer F. Analysis of Dielectric Spectra[M]. Kremer F, Schönhals A. Broadband Dielectric Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003: 59-98.
|
22 |
Roling B, Drüschler M, Huber B. Slow and fast capacitive process taking place at the ionic liquid/electrode interface[J]. Faraday Discussions, 2012, 154: 303-311.
|
23 |
Baldelli S. Surface structure at the ionic liquid-electrified metal interface[J]. Accounts of Chemical Research, 2008, 41(3): 421-431.
|
24 |
Anderson E, Grozovski V, Siinor L, et al. Influence of the electrode potential and in situ STM scanning conditions on the phase boundary structure of the single crystal Bi(111)|1-butyl-4-methylpyridinium tetrafluoroborate interface[J]. Journal of Electroanalytical Chemistry, 2013, 709: 46-56.
|
25 |
Pajkossy T, Kolb D M. The interfacial capacitance of Au(100) in an ionic liquid, 1-butyl-3-methyl-imidazolium hexafluorophosphate[J]. Electrochemistry Communications, 2011, 13(3): 284-286.
|
26 |
Yin L, Huang Y, Chen H, et al. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes. II. Accounts of ionic interactions[J]. Physical Chemistry Chemical Physics, 2018, 20(26): 17606-17614.
|
27 |
Goodwin Z A H, Feng G, Kornyshev A A. Mean-field theory of electrical double layer in ionic liquids with account of short-range correlations[J]. Electrochimica Acta, 2017, 225: 190-197.
|
28 |
Kornyshev A A. Double-layer in ionic liquids: Paradigm change?[J]. The Journal of Physical Chemistry B, 2007, 111(20): 5545-5557.
|
29 |
Kilic M S, Bazant M Z, Ajdari A. Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging[J]. Physical Review E, 2007, 75(2): 021502.
|