储能科学与技术 ›› 2024, Vol. 13 ›› Issue (10): 3343-3356.doi: 10.19799/j.cnki.2095-4239.2024.0256
闵越明1,2(), 张闯1,2, 刘文杰1,2, 刘素贞1,2, 徐志成1,2()
收稿日期:
2024-03-22
修回日期:
2024-04-18
出版日期:
2024-10-28
发布日期:
2024-10-30
通讯作者:
徐志成
E-mail:202121401001@stu.hebut.edu.cn;xzc@hebut.edu.cn
作者简介:
闵越明(1999—),男,硕士研究生,研究方向为锂离子电池老化机理与检测,E-mail:202121401001@stu.hebut.edu.cn基金资助:
Yueming MIN1,2(), Chuang ZHANG1,2, Wenjie LIU1,2, Suzhen LIU1,2, Zhicheng XU1,2()
Received:
2024-03-22
Revised:
2024-04-18
Online:
2024-10-28
Published:
2024-10-30
Contact:
Zhicheng XU
E-mail:202121401001@stu.hebut.edu.cn;xzc@hebut.edu.cn
摘要:
锂离子电池在实际工作中会因为电池组的不一致性或充电系统故障而出现微过充现象,长期循环会引发安全隐患。为探究微过充循环对锂离子电池老化特性及其失效机理的影响,将电池分别过充至不同截止电压,应用电化学阻抗谱、弛豫时间分布和容量增量分析等技术对其进行老化分析,并结合拆解后电极的扫描电子显微镜(SEM)、能量色散X射线谱(EDS)和X射线光电子能谱(XPS)表征加以验证。实验结果表明,与正常循环相比,微过充循环会显著加速电池老化,导致电池比容量衰减速度加快;随着循环次数的增加,电池内部的可用锂离子和活性材料不断消耗,电池各类阻抗明显增加,其中4.5 V微过充循环电池的电荷转移电阻较初始状态增加了196.15%;微过充循环还会加剧电池极化现象,降低材料的循环稳定性;微过充循环后,电池的活性材料逐渐从集流体上脱落,正极材料的活性颗粒破裂,负极材料表面固体电解质界面(SEI)膜增厚,F、P元素含量显著增加。
中图分类号:
闵越明, 张闯, 刘文杰, 刘素贞, 徐志成. 锂离子电池微过充循环老化特性与失效机理研究[J]. 储能科学与技术, 2024, 13(10): 3343-3356.
Yueming MIN, Chuang ZHANG, Wenjie LIU, Suzhen LIU, Zhicheng XU. Study on aging characteristics and failure mechanism of lithium-ion battery under slight-overcharge cycling[J]. Energy Storage Science and Technology, 2024, 13(10): 3343-3356.
表3
原始电池与微过充循环电池正极材料EDS表面成分分析"
元素 | 原子百分比/% | 质量分数/% | ||||||
---|---|---|---|---|---|---|---|---|
原始 | 4.3 V | 4.4 V | 4.5 V | 原始 | 4.3 V | 4.4 V | 4.5 V | |
C | 45.3 | 43.8 | 43.7 | 44.3 | 25.20 | 23.93 | 22.84 | 25.32 |
O | 27.7 | 28.5 | 27.5 | 24.4 | 20.51 | 20.76 | 20.57 | 18.57 |
F | 9.6 | 9.6 | 11.4 | 15.5 | 8.40 | 8.34 | 9.96 | 13.99 |
P | 0.5 | 0.4 | 0.5 | 1 | 0.67 | 0.50 | 0.83 | 1.41 |
Ni | 8.3 | 8.7 | 8.2 | 7.2 | 22.49 | 23.26 | 23.03 | 20.21 |
Co | 3.3 | 3.4 | 3.3 | 2.9 | 9.04 | 9.07 | 8.85 | 8.25 |
Mn | 5.4 | 5.7 | 5.5 | 4.7 | 13.69 | 14.15 | 13.91 | 12.26 |
1 | 来鑫, 陈权威, 顾黄辉, 等. 面向 "双碳" 战略目标的锂离子电池生命周期评价: 框架、方法与进展[J]. 机械工程学报, 2022, 58(22): 3-18. DOI: 10.3901/JME.2022.22.003. |
LAI X, CHEN Q W, GU H H, et al. Life cycle assessment of lithium-ion batteries for carbon-peaking and carbon-neutrality: Framework, methods, and progress[J]. Journal of Mechanical Engineering, 2022, 58(22): 3-18. DOI: 10.3901/JME.2022.22.003. | |
2 | 刘素贞, 陈晶晶, 张闯, 等. 基于区域电压的锂离子电池不均匀发热模型[J]. 电工技术学报, 2022, 37(21): 5627-5636. DOI: 10.19595/j.cnki.1000-6753.tces.211265. |
LIU S Z, CHEN J J, ZHANG C, et al. Regional voltage-based uneven heating model of lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5627-5636. DOI: 10.19595/j.cnki.1000-6753.tces.211265. | |
3 | LIU J L, WANG Z R, BAI J L. Influences of multi factors on thermal runaway induced by overcharging of lithium-ion battery[J]. Journal of Energy Chemistry, 2022, 70: 531-541. DOI: 10.1016/j.jechem.2022.03.011. |
4 | WANG Z P, YUAN J, ZHU X Q, et al. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study[J]. Journal of Energy Chemistry, 2021, 55: 484-498. DOI: 10.1016/j.jechem.2020.07.028. |
5 | WANG P, YANG L, WANG H, et al. Temperature estimation from current and voltage measurements in lithium-ion battery systems[J]. Journal of Energy Storage, 2021, 34: 102133. DOI: 10.1016/j.est.2020.102133. |
6 | THOMAS J K, CRASTA H R, KAUSTHUBHA K, et al. Battery monitoring system using machine learning[J]. Journal of Energy Storage, 2021, 40: 102741. DOI: 10.1016/j.est.2021.102741. |
7 | 赖铱麟, 杨凯, 刘皓, 等. 锂离子电池安全预警方法综述[J]. 储能科学与技术, 2020, 9(6): 1926-1932. DOI: 10.19799/j.cnki.2095-4239.2020.0158. |
LAI Y L, YANG K, LIU H, et al. Lithium-ion battery safety warning methods review[J]. Energy Storage Science and Technology, 2020, 9(6): 1926-1932. DOI: 10.19799/j.cnki.2095-4239. 2020.0158. | |
8 | OUYANG M G, REN D S, LU L G, et al. Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2 +LiyMn2O4 composite cathode[J]. Journal of Power Sources, 2015, 279: 626-635. DOI: 10.1016/j.jpowsour. 2015.01.051. |
9 | ZHOU J J, CHAO P P, ZHANG N T, et al. Analysis of lithium-ion battery micro-overcharge cycle damage mechanism based on electrochemical impedance spectroscopy[J]. E3S Web of Conferences, 2021, 261: 02076. DOI: 10.1051/e3sconf/202126102076. |
10 | YANG M J, YE Y J, YANG A J, et al. Comparative study on aging and thermal runaway of commercial LiFePO4/graphite battery undergoing slight overcharge cycling[J]. Journal of Energy Storage, 2022, 50: 104691. DOI: 10.1016/j.est.2022.104691. |
11 | LIU J L, PENG W, YANG M P, et al. Quantitative analysis of aging and detection of commercial 18650 lithium-ion battery under slight overcharging cycling[J]. Journal of Cleaner Production, 2022, 340: 130756. DOI: 10.1016/j.jclepro. 2022.130756. |
12 | LIU J L, DUAN Q L, MA M N, et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources, 2020, 445: 227263. DOI: 10.1016/j.jpowsour. 2019.227263. |
13 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5. DOI: 10.1149/1.2113792. |
14 | 常修亮, 李希超, 贾隆舟, 等. 过充循环老化电池产热特性[J]. 储能科学与技术, 2023, 12(3): 685-697. DOI: 10.19799/j.cnki.2095-4239.2022.0692. |
CHANG X L, LI X C, JIA L Z, et al. Heat generation characteristics of overcharged cyclic aging batteries[J]. Energy Storage Science and Technology, 2023, 12(3): 685-697. DOI: 10.19799/j.cnki.2095-4239.2022.0692. | |
15 | 王春林, 朱广焱, 张鹏博, 等. 弛豫时间分布函数应用于电化学阻抗谱分析[J]. 电源技术, 2021, 45(12): 1569-1572, 1593. DOI: 10.3969/j.issn.1002-087X.2021.12.013. |
WANG C L, ZHU G Y, ZHANG P B, et al. Application of distribution function of relaxation time in analyzing electrochemical impedance spectroscopy[J]. Chinese Journal of Power Sources, 2021, 45(12): 1569-1572, 1593. DOI: 10.3969/j.issn.1002-087X.2021.12.013. | |
16 | LU Y, ZHAO C Z, HUANG J Q, et al. The timescale identification decoupling complicated kinetic processes in lithium batteries[J]. Joule, 2022, 6(6): 1172-1198. DOI: 10.1016/j.joule.2022.05.005. |
17 | DUBARRY M, TRUCHOT C, LIAW B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2C cycle aging[J]. Journal of Power Sources, 2011, 196(23): 10336-10343. DOI: 10.1016/j.jpowsour.2011.08.078. |
18 | PASTOR-FERNÁNDEZ C, UDDIN K, CHOUCHELAMANE G H, et al. A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems[J]. Journal of Power Sources, 2017, 360: 301-318. DOI: 10.1016/j.jpowsour.2017.03.042. |
19 | SUN H, JIANG B, YOU H Z, et al. Quantitative analysis of degradation modes of lithium-ion battery under different operating conditions[J]. Energies, 2021, 14(2): 350. DOI: 10.3390/en14020350. |
20 | HAHN M, ROSENBACH D, KRIMALOWSKI A, et al. Investigating solid polymer and ceramic electrolytes for lithium-ion batteries by means of an extended Distribution of Relaxation Times analysis[J]. Electrochimica Acta, 2020, 344: 136060. DOI: 10.1016/j.electacta.2020.136060. |
21 | 张青松, 赵启臣. 过充循环对锂离子电池老化及安全性影响[J]. 高电压技术, 2020, 46(10): 3390-3397. DOI: 10.13336/j.1003-6520.hve.20200361. |
ZHANG Q S, ZHAO Q C. Effects of overcharge cycling on the aging and safety of lithium ion batteries[J]. High Voltage Engineering, 2020, 46(10): 3390-3397. DOI: 10.13336/j.1003-6520.hve.20200361. | |
22 | 张闯, 王泽山, 刘素贞, 等. 基于电化学阻抗谱的锂离子电池过放电诱发内短路的检测方法[J]. 电工技术学报, 2023, 38(23): 6279-6291, 6344. DOI: 10.19595/j.cnki.1000-6753.tces.221545. |
ZHANG C, WANG Z S, LIU S Z, et al. Detection method of overdischarge-induced internal short circuit in lithium-ion batteries based on electrochemical impedance spectroscopy[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6279-6291, 6344. DOI: 10.19595/j.cnki.1000-6753.tces.221545. | |
23 | LYU N W, JIN Y, XIONG R, et al. Real-time overcharge warning and early thermal runaway prediction of Li-ion battery by online impedance measurement[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1929-1936. DOI: 10.1109/TIE.2021.3062267. |
24 | BARRÉ A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689. DOI: 10.1016/j.jpowsour.2013.05.040. |
25 | 许卓, 李希超, 贾隆舟, 等. 过充循环对锂离子电池容量衰减及安全性影响[J]. 储能科学与技术, 2022, 11(12): 3978-3986. DOI: 10.19799/j.cnki.2095-4239.2022.0405. |
XU Z, LI X C, JIA L Z, et al. Effect of overcharge cycle on capacity attenuation and safety of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(12): 3978-3986. DOI: 10.19799/j.cnki.2095-4239.2022.0405. | |
26 | 俎梦杨, 张梦, 李子坤, 等. 高镍NCA、NCM及NCMA材料循环容量衰减机理研究[J]. 储能科学与技术, 2023, 12(1): 51-60. DOI: 10.19799/j.cnki.2095-4239.2022.0434. |
ZU M Y, ZHANG M, LI Z K, et al. Cycle performance and degradation mechanism of Ni-rich NCA, NCM, and NCMA[J]. Energy Storage Science and Technology, 2023, 12(1): 51-60. DOI: 10.19799/j.cnki.2095-4239.2022.0434. | |
27 | SARASKETA-ZABALA E, AGUESSE F, VILLARREAL I, et al. Understanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps[J]. The Journal of Physical Chemistry C, 2015, 119(2): 896-906. DOI: 10.1021/jp510071d. |
28 | 栗志展, 秦金磊, 梁嘉宁, 等. 高镍三元层状锂离子电池正极材料: 研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. DOI: 10.19799/j.cnki.2095-4239.2021.0595. |
LI Z Z, QIN J L, LIANG J N, et al. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies[J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. DOI: 10.19799/j.cnki.2095-4239.2021.0595. | |
29 | JIN C B, LIU T F, SHENG O W, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nature Energy, 2021, 6: 378-387. DOI: 10.1038/s41560-021-00789-7. |
30 | 朱晓庆, 王震坡, WANG Hsin, 等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91-118. DOI: 10.3901/JME.2020.14.091. |
ZHU X Q, WANG Z P, WANG H, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14): 91-118. DOI: 10.3901/JME.2020.14.091. | |
31 | 刘先庆, 王长宏, 吴婷婷. 锂离子电池老化机理及综合利用综述[J]. 电池, 2022, 52(2): 223-227. DOI: 10.19535/j.1001-1579.2022.02.024. |
LIU X Q, WANG C H, WU T T. Review of aging mechanism and comprehensive use of Li-ion battery[J]. Dianchi(Battery Bimonthly), 2022, 52(2): 223-227. DOI: 10.19535/j.1001-1579.2022.02.024. |
[1] | 孙中麟, 李嘉波, 田迪, 王志璇, 邢晓静. 基于COA-LSTM和VMD的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2024, 13(9): 3254-3265. |
[2] | 陆继忠, 彭思敏, 李晓宇. 基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法[J]. 储能科学与技术, 2024, 13(9): 2972-2982. |
[3] | 胡雪峰, 常先雷, 刘肖肖, 徐威, 张文彬. 适用于宽温度范围的锂离子电池SOC估计方法[J]. 储能科学与技术, 2024, 13(9): 2983-2994. |
[4] | 沈思远, 刘亚坤, 罗栋煌, 李雨珺, 郝伟. 储能锂离子电池模组暂态过电压防护设计与电路研发[J]. 储能科学与技术, 2024, 13(9): 3277-3286. |
[5] | 陈媛, 章思源, 蔡宇晶, 黄小贺, 刘炎忠. 融合多项式特征扩展与CNN-Transformer模型的锂电池SOH估计[J]. 储能科学与技术, 2024, 13(9): 2995-3005. |
[6] | 邢瑞鹤, 翁素婷, 李叶晶, 张佳怡, 张浩, 王雪锋. AI辅助电池材料表征与数据分析[J]. 储能科学与技术, 2024, 13(9): 2839-2863. |
[7] | 何宁, 杨芳芳. 考虑能量和温度特征的锂离子电池早期寿命预测[J]. 储能科学与技术, 2024, 13(9): 3016-3029. |
[8] | 管鸿盛, 钱诚, 孙博, 任羿. 贫数据条件下锂离子电池容量退化轨迹预测方法[J]. 储能科学与技术, 2024, 13(9): 3084-3093. |
[9] | 柯学, 洪华伟, 郑鹏, 李智诚, 范培潇, 杨军, 郭宇铮, 蒯春光. 基于多时间尺度建模自动特征提取和通道注意力机制的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(9): 3059-3071. |
[10] | 田成文, 孙丙香, 赵鑫泽, 付智城, 马仕昌, 赵博, 张旭博. 基于数据驱动的锂离子电池快速寿命预测[J]. 储能科学与技术, 2024, 13(9): 3103-3111. |
[11] | 李清波, 张懋慧, 罗英, 吕桃林, 解晶莹. 基于等效电路模型融合电化学原理的锂离子电池荷电状态估计[J]. 储能科学与技术, 2024, 13(9): 3072-3083. |
[12] | 何智峰, 陶远哲, 胡泳钢, 王其聪, 杨勇. 机器学习强化的电化学阻抗谱技术及其在锂离子电池研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2933-2951. |
[13] | 孙丙香, 杨鑫, 周兴振, 马仕昌, 王志豪, 张维戈. 基于简化阻抗模型和比较元启发式算法的锂离子电池参数辨识方法[J]. 储能科学与技术, 2024, 13(9): 2952-2962. |
[14] | 黄煜峰, 梁焕超, 许磊. 基于卡尔曼滤波算法优化Transformer模型的锂离子电池健康状态预测方法[J]. 储能科学与技术, 2024, 13(8): 2791-2802. |
[15] | 王志勇, 蔡君瑶, 佘英奇, 钟树林, 潘康华. 氮杂环导电高分子改性锂离子电池石墨负极材料[J]. 储能科学与技术, 2024, 13(8): 2511-2518. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||