储能科学与技术

• XXXX • 上一篇    下一篇

基于高浓度相变微胶囊悬浮液的全气候电池热管理实验研究

文健(✉),夏志豪,安英贤,温涵,柯钫泷,胡章茂(✉),王唯,吕又付   

  1. 长沙理工大学能源与动力工程学院,湖南 长沙 410000
  • 收稿日期:2025-11-04 修回日期:2025-12-02
  • 通讯作者: 胡章茂 E-mail:wenjian_0427@163.com;huzhangmao@163.com
  • 作者简介:文健(2001—),男,硕士研究生,研究方向为电池热管理,E-mail:wenjian_0427@163.com 胡章茂,副教授,研究方向为相变储能技术与电池热管理,E-mail:huzhangmao@163.com
  • 基金资助:
    直吸式太阳能热化学反应器内太阳辐射传输调控及温度场优化研究(23A0263)
    受限空间内纳米流体非等温吸收CO2过程热质传递机理与调控方法研究(52306069)

Experimental study on thermal management of all-weather batteries based on high-concentration phase change microcapsule suspension

WEN Jian(✉),XIA Zhihao,AN Yingxian,WEN Han,KE Fanglong,HU Zhangmao(✉),WANG Wei,LV Youfu   

  1. College of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410000, Hunan, China
  • Received:2025-11-04 Revised:2025-12-02
  • Contact: HU Zhangmao E-mail:wenjian_0427@163.com;huzhangmao@163.com

摘要: 为确保电动汽车锂电池在-30℃至40℃的宽温域安全稳定运行,需依赖高效的热管理系统进行精准温控,以应对低温导致的容量衰减与高温引发的热失控风险。相变微胶囊悬浮液(MPCMS)是一种新兴的电池热管理工质,近年来的研究主要集中在其低浓度范围。本研究提出了一种基于高质量浓度(5-30%) MPCMS的全气候电池热管理系统,并通过电加热棒模拟电池热负荷,系统研究了其在低温储热保温、常温储冷吸热及高温散热冷却三种典型工况下的热管理性能。研究表明,在-30℃低温条件下,与无MPCMS的热管理情况下,质量百分数为5%、15%和30% MPCMS与保温层协同可使保温时间分别延长12.4%、24.9%和34.1%;当环境温度处于常温(低于微胶囊相变点,23℃)时,MPCMS可以有效的吸收电池放电时产生的热量,在1C、2C和3C放电发热工况下较无MPCMS系统最大降温达2.6℃、4.7℃和5.2℃,同时质量百分数为15% MPCMS在潜热吸收与对流换热能力中取得了最优平衡;在40℃的高温环境中,即使加热棒在质量百分数为30% MPCMS中模拟3C放电热负荷工况下,通过控制冷却水入口温度与环境温差为10℃,也可将系统温度稳定在40℃以下。

关键词: 电池热管理, 全气候温度, 相变微胶囊悬浮液, 保温, 传热

Abstract: To ensure the safe and stable operation of lithium-ion batteries in electric vehicles across a broad temperature range of -30℃ to 40℃, highly efficient battery thermal management systems (BTMS) are essential for precise temperature regulation. These systems mitigate capacity degradation at low temperatures and thermal runaway risks at high temperatures. Microencapsulated phase change material slurry (MPCMS) has emerged as a promising working fluid for battery thermal management. While recent research has primarily explored its application at low concentrations, this study proposes a comprehensive all-climate BTMS utilizing MPCMS at high mass fraction (5-30%). The thermal management performance was systematically evaluated under three characteristic operational modes—thermal insulation and storage at low temperatures, cold storage and heat absorption at moderate temperatures, and heat dissipation and cooling at high temperatures—using electrically heated rods to simulate battery thermal loads. Experimental findings demonstrate that under a low-temperature condition of -30℃, compared to a system without MPCMS, the mass fraction of 5%, 15%, and 30% MPCMS, synergistically working with an insulation layer, extended the thermal preservation time by 8.1%, 18.2%, and 24%, respectively. At a moderate ambient temperature (23℃, below the phase change point of the microcapsules), MPCMS effectively absorbed the heat generated during battery discharge. Under 1C, 2C, and 3C discharge rate scenarios, the maximum temperature reductions achieved were 2.6℃, 4.7℃, and 5.2℃, respectively, compared to the system without MPCMS. Notably, the mass fraction 15% MPCMS formulation demonstrated an optimal balance between latent heat absorption capacity and convective heat transfer performance. Under a high-temperature environment of 40℃, even when the heating rod simulated a 3C discharge thermal load within the mass fraction 30% MPCMS, the system temperature was successfully stabilized below 40℃ by maintaining a 10℃ temperature difference between the cooling water inlet and the ambient environment. This study underscores the significant potential of high-concentration MPCMS as an efficient thermal management medium for lithium-ion batteries, enabling effective thermal regulation across diverse and challenging climatic conditions.

Key words: battery thermal management, All-weather temperature, Phase-change microcapsule suspension, heat preservation, heat transfer

中图分类号: