储能科学与技术 ›› 2013, Vol. 2 ›› Issue (5): 468-479.doi: 10.3969/j.issn.2095-4239.2013.05.004
徐凯琪, 林明翔, 唐代春, 董金平, 孙洋, 闫勇, 陈彬, 王昊, 贲留斌, 黄学杰
收稿日期:
2013-08-20
修回日期:
2013-08-25
出版日期:
2013-10-19
发布日期:
2013-10-19
通讯作者:
黄学杰,研究员,E-mail:xjhuang@jphy.ac.cn.
作者简介:
徐凯琪(1998--),男,博士研究生,研究方向为锂离子电池负极材料,E-mail:xukaiqi@yeah.net
XU Kaiqi, LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, YAN Yong, CHEN Bin, WANG Hao, BEN Liubin, HUANG Xuejie
Received:
2013-08-20
Revised:
2013-08-25
Online:
2013-10-19
Published:
2013-10-19
摘要: 该文是一篇近两个月的锂电池文献评述,我们以"lithium"和"batter*"为关键词检索了Web of Science从2013年6月1日至2013年7月31日上线的锂电池研究论文,共有951篇,选择其中100篇加以评论.层状氧化物正极材料的热稳定性,循环过程中的结构相变以及产气问题受到人们关注,高电压的尖晶石结构LiNi0.5M1.5O4在高压下与电解液的匹配以及添加剂的使用也受到人们较多的关注.高容量的Si基负极材料一直是研究的热点,本阶段碳材料与锡,氧化物复合负极,电解液添加剂,锂硫电池正极和锂空气电池均有多篇研究论文发表,理论模拟工作扩展到固体电解质,SEI,硅负极嵌锂过程等.除了这些以材料为主的研究之外,针对电池的原位分析和电池模型应用的研究论文大量出现.
中图分类号:
徐凯琪, 林明翔, 唐代春, 董金平, 孙洋, 闫勇, 陈彬, 王昊, 贲留斌, 黄学杰. 锂电池百篇论文点评(2013.6.1--2013.7.31)[J]. 储能科学与技术, 2013, 2(5): 468-479.
XU Kaiqi, LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, YAN Yong, CHEN Bin, WANG Hao, BEN Liubin, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(June 1,2013 to July 31,2013)[J]. Energy Storage Science and Technology, 2013, 2(5): 468-479.
[1] Yu H J,Ishikawa R,So Y G, et al. Direct atomic-resolution observation of two phases in the Li 1.2 Mn 0.567 Ni 0.166 Co 0.067 O 2 cathode material for lithium-ion batteries[J]. Angewandte Chemie. International Edition ,2013,52(23):5969-5973. [2] Takamatsu D,Mori S,Orikasa Y, et al. Effects of ZrO 2 coating on LiCoO 2 thin-film electrode studied by in situ X-ray absorption spectroscopy[J]. Journal of The Electrochemical Society ,2013,160(5):A3054-A3060. [3] Mohanty D,Sefat A S,Kalnaus S, et al. Investigating phase transformation in the Li 1.2 Co 0.1 Mn 0.55 Ni 0.15 O 2 lithium-ion battery cathode during high-voltage hold(4.5 V) via magnetic,X-ray diffraction and electron microscopy studies[J]. Journal of Materials Chemistry A ,2013,1(20): 6249-6261. [4] Bie X F,Du F,Wang Y H, et al. Relationships between the crystal/interfacial properties and electrochemical performance of LiNi 0.33 Co 0.33 Mn 0.33 O 2 in the voltage window of 2.5~4.6 V[J]. Electrochimica Acta ,2013,97:357-363. [5] Fell C R,Qian D N,Carroll K J, et al. Correlation between oxygen vacancy, microstrain, and cation distribution in lithium-excess layered oxides during the first electrochemical cycle[J]. Chemistry of Materials ,2013,25(9):1621-1629. [6] Yamada H,Zhao W W,Noguchi H. Relation between crystallinity and electrochemical properties of Li Li 1/5 NiVMn 3/5 O 2 [J]. Electrochemistry ,2013,81(6):460-466. [7] Koga H,Croguennec L,Menetrier M, et al. Different oxygen redox participation for bulk and surface:A possible global explanation for the cycling mechanism of Li 1.20 Mn 0.54 CO 0.13 Ni 0.13 O 2 [J]. Journal of Power Sources ,2013,236:250-258. [8] Koga H,Croguennec L,Menetrier M, et al. Reversible oxygen participation to the redox processes revealed for Li 1.20 Mn 0.54 Co 0.13 Ni 0.13 O 2 [J]. Journal of The Electrochemical Society ,2013,160(6):A786-A792. [9] Lu W Q,Wu Q L,Dees D W. Electrochemical characterization of lithium and manganese rich composite material for lithium ion batteries[J]. Journal of The Electrochemical Society ,2013,160(6):A950-A954. [10] Gutierrez A,Manthiram A. Understanding the effects of cationic and anionic substitutions in spinel cathodes of lithium-ion batteries[J]. Journal of The Electrochemical Society ,2013,160(6):A901-A905. [11] Gu Y P,Taniguchi K,Tajima R ,et al. A new "zero-strain" material for electrochemical lithium insertion[J]. Journal of Materials Chemistry A ,2013,1(22):6550-6552. [12] Hu L B,Zhang Z C,Amine K. Electrochemical investigation of carbonate-based electrolytes for high voltage lithium-ion cells[J]. Journal of Power Sources ,2013,236:175-180. [13] Hao X G,Bartlett B M. Improving the electrochemical stability of the high-voltage Li-ion battery cathode LiNi 0.5 Mn 1.5 O 4 by titanate-based surface modification[J]. Journal of The Electro- chemical Society ,2013,160(5):A3162-A3170. [14] Kim Y,Dudney N J,Chi M F, et al. A perspective on coatings to stabilize high-voltage cathodes:LiMn 1.5 Ni 0.5 O 4 with sub-nanometer lipon cycled with LiPF 6 electrolyte[J]. Journal of The Electro- chemical Society ,2013,160(5):A3113-A3125. [15] Lin M,Wang S H,Gong Z L, et al. A strategy to improve cyclic performance of LiNi 0.5 Mn 1.5 O 4 in a wide voltage region by Ti-doping[J]. Journal of The Electrochemical Society ,2013,160(5):A3036-A3040. [16] Chong J,Xun S D,Song X Y, et al. Surface stabilized LiNi 0.5 Mn 1.5 O 4 cathode materials with high-rate capability and long cycle life for lithium ion batteries[J]. Nano Energy ,2013,2(2):283-293. [17] Prabakar S J R,Hwang Y H,Lee B, et al. Graphene-sandwiched LiNi 0.5 Mn 1.5 O 4 cathode composites for enhanced high voltage performance in Li ion batteries[J]. Journal of The Electrochemical Society ,2013,160(6):A832-A837. [18] He Y,Yuan F M,Ma H, et al. Influence of Al 3+ ions on the morphology and structure of layered LiMn 1- x Al x O 2 cathode materials for the lithium ion battery[J]. Journal of Alloys and Compounds ,2013,569:67-75. [19] Gu M,Genc A,Belharouak I, et al. Nanoscale phase separation, cation ordering, and surface chemistry in pristine Li 1.2 Ni 0.2 Mn 0.6 O 2 for Li-ion batteries[J]. Chemistry of Materials ,2013,25(11):2319-2326. [20] Carroll K J,Qian D,Fell C, et al. Probing the electrode/electrolyte interface in the lithium excess layered oxide Li 1.2 Ni 0.2 Mn 0.6 O 2 [J]. Physical Chemistry Chemical Physics ,2013,15(26):11128-11138. [21] Madec L,Humbert B,Lestriez B, et al. Covalent vs. non-covalent redox functionalization of C-LiFePO 4 based electrodes[J]. Journal of Power Sources ,2013,232:246-253. [22] Boesenberg U,Meirer F,Liu Y J, et al. Mesoscale phase distribution in single particles of LiFePO 4 following lithium deintercalation[J]. Chemistry of Materials ,2013,25(9):1664-1672. [23] Lv D P,Bai J Y,Zhang P, et al. Understanding the high capacity of Li 2 FeSiO 4 : In situ XRD/XANES study combined with first- principles calculations[J]. Chemistry of Materials ,2013,25(10):2014-2020. [24] Orikasa Y,Maeda T,Koyama Y, et al. Phase transition analysis between LiFePO 4 and FePO 4 by in-situ time-resolved X-ray absorption and X-ray diffraction[J]. Journal of The Electrochemical Society ,2013,160(5):A3061-A3065. [25] Sasaki T,Ukyo Y,Novak P. Memory effect in a lithium-ion battery[J]. Nature Materials ,2013,12(6):569-575. [26] Radhamani A V,Karthik C,Ubic R, et al. Suppression of Fe-Li(center dot)antisite defects in fluorine-doped LiFePO 4 [J]. Scripta Materialia ,2013,69(1):96-99. [27] Fister T T,Goldman J L,Long B R, et al. X-ray diffraction microscopy of lithiated silicon microstructures[J]. Applied Physics Letters ,2013,102(13). [28] Han Z J,Yabuuchi N,Hashimoto S, et al. Cross-linked poly(acrylic acid)with polycarbodiimide as advanced binder for Si/graphite composite negative electrodes in Li-ion batteries[J]. Ecs Electrochemistry Letters ,2013,2(2):A17-A20. [29] Ma Z S,Li T T,Huang Y L, et al. Critical silicon-anode size for averting lithiation-induced mechanical failure of lithium-ion batteries[J]. Rsc Advances ,2013,3(20):7398-7402. [30] Piper D M,Yersak T A,Son S B, et al. Conformal coatings of cyclized-PAN for mechanically resilient Si nano-composite anodes[J]. Advanced Energy Materials ,2013,3(6): 697-702. [31] Xu J,Jin J,Kim K, et al. One-pot galvanic formation of ultrathin-shell Sn/CoO x nanohollows as high performance anode materials in lithium ion batteries[J]. Chemical Communications ,2013,49(53):5981-5983. [32] Klavetter K C,Wood S M,Lin Y M, et al. A high-rate germanium-particle slurry cast Li-ion anode with high coulombic efficiency and long cycle life[J]. Journal of Power Sources ,2013, 238:123-136. [33] Tritsaris G A,Kaxiras E,MENG S, et al. Adsorption and diffusion of lithium on layered silicon for Li-ion storage[J]. Nano Letters ,2013,13(5):2258-2263. [34] Jung D S,Hwang T H,Park S B, et al. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries[J]. Nano Letters ,2013,13(5):2092-2097. [35] Nithya C,Gopukumar S. Reduced graphite oxide/nano Sn:A superior composite anode material for rechargeable lithium-ion batteries[J]. Chemsuschem. ,2013,6(5):898-904. [36] Sun Y M,Hu X L,Luo W, et al. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries[J]. Advanced Functional Materials ,2013,23(19):2436-2444. [37] Hao X G,Bartlett B M. Li 4 Ti 5 O 12 nanocrystals synthesized by carbon templating from solution precursors yield high performance thin film Li-ion battery electrodes[J]. Advanced Energy Materials ,2013,3(6):753-761. [38] Prabakar S J R,Hwang Y H,Bae E G, et al. SnO 2 /graphene composites with self-assembled alternating oxide and amine layers for high Li-storage and excellent stability[J]. Advanced Materials ,2013,25(24):3307-3312. [39] Kim M S,Bhattacharjya D,Fang B Z, et al. Morphology-dependent Li storage performance of ordered mesoporous carbon as anode material[J]. Langmuir ,2013,29(22):6754-6761. [40] Wei W,Yang S B,Zhou H X, et al. 3D graphene foams cross-linked with pre-encapsulated Fe 3 O 4 nanospheres for enhanced lithium storage[J]. Advanced Materials ,2013,25(21):2909-2914. [41] Yue W B,Jiang S H,Huang W J, et al. Sandwich-structural graphene-based metal oxides as anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A ,2013,1(23):6928-6933. [42] Xing W Y,Wang X,Song L, et al. Synthesis of a Sn-In mixed oxide/graphene hybrid as an electrode material with improved Li-storage properties[J]. Materials Chemistry and Physics ,2013,140(2-3):441-446. [43] Liu B,Abouimrane A,Ren Y, et al. Electrochemical study and material characterization of x SiO center dot(1- x )Sn 30 Co 30 C 40 composite anode material for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2013,160(6):A882-A887. [44] Xun S D,Song X Y,Battaglia V, et al. Conductive polymer binder-enabled cycling of pure Tin nanoparticle composite anode electrodes for a lithium-ion battery[J]. Journal of the Electro - chemical Society ,2013,160(6):A849-A855. [45] Gao X,Fisher C A J,Kimura T, et al. Lithium atom and a-site vacancy distributions in lanthanum lithium titanate[J]. Chemistry of Materials ,2013,25(9):1607-1614. [46] Tan J J,Tiwari A. Fabrication and characterization of Li 7 La 3 Zr 2 O 12 thin films for lithium ion battery[J]. Ecs Solid State Letters ,2012,1(6):Q57-Q60. [47] Kim Y. Investigation of the gas evolution in lithium ion batteries:Effect of free lithium compounds in cathode materials[J]. Journal of Solid State Electrochemistry ,2013,17(7):1961-1965. [48] Zhang Z C,Hu L B,Wu H M, et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry[J]. Energy & Environmental Science ,2013,6(6):1806-1810. [49] Arbizzani C,De Giorgio F,Porcarelli L, et al. Use of non-conventional electrolyte salt and additives in high-voltage graphite/LiNi 0.4 Mn 1.6 O 4 batteries[J]. Journal of Power Sources ,2013,238:17-20. [50] Tarnopolskiy V,Kalhoff J,Nadherna M, et al. Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 V LiNi 0.4 Mn 1.6 O 4 cathodes[J]. Journal of Power Sources ,2013,236:39-46. [51] Petrowsky M,Ismail M,Glatzhofer D T, et al. Mass and charge transport in cyclic carbonates:Implications for improved lithium ion battery electrolytes[J]. Journal of Physical Chemistry B ,2013,117(19):5963-5970. [52] Chen Y H,Freunberger S A,Peng Z Q, et al. Charging a Li-O 2 battery using a redox mediator[J]. Nature Chemistry ,2013,5(6):489-494. [53] Li J,Zhang H M,Zhang Y N, et al. A hierarchical porous electrode using a micron-sized honeycomb-like carbon material for high capacity lithium-oxygen batteries[J]. Nanoscale ,2013,5(11):4647-4651. [54] Terashima C,Iwai Y,Cho S P, et al. Solution plasma sputtering processes for the synthesis of PtAu/C catalysts for Li-air batteries[J]. International Journal of Electrochemical Science ,2013,8(4):5407-5420. [55] Takechi K,Higashi S,Mizuno F, et al. Stability of solvents against superoxide radical species for the electrolyte of lithium-air battery[J]. Ecs Electrochemistry Letters ,2012,1(1): A27-A29. [56] Yao K P C,Kwabi D G,Quinlan R A, et al. Thermal stability of Li 2 O 2 and Li 2 O for Li-air batteries: In situ XRD and XPS studies[J]. Journal of The Electrochemical Society ,2013,160(6):A824-A831. [57] Li W Y,Zheng G Y,Yang Y, et al. High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach[J]. Proceedings of the National Academy of Sciences of the United States of America ,2013,110(18):7148-7153. [58] Zhang S S. New insight into liquid electrolyte of rechargeable lithium/sulfur battery[J]. Electrochimica Acta ,2013,97:226-230. [59] Zhang S S. Does the sulfur cathode require good mixing for a liquid electrolyte lithium/sulfur cell?[J]. Electrochemistry Communications ,2013,31:10-12. [60] Tavassol H,Chan M K Y,Catarello M G, et al. Surface coverage and SEI induced electrochemical surface stress changes during Li deposition in a model system for Li-ion battery anodes[J]. Journal of The Electrochemical Society ,2013,160(6):A888-A896. [61] Bottke P,Freude D,Wilkening M. Ultraslow Li exchange processes in diamagnetic Li 2 ZrO 3 as monitored by EXSY NMR[J]. Journal of Physical Chemistry C ,2013,117(16):8114-8119. [62] Davis L J M,Goward G R. Differentiating lithium ion hopping rates in vanadium phosphate versus vanadium fluorophosphate structures using 1D Li-6 selective inversion NMR[J]. Journal of Physical Chemistry C ,2013,117(16):7981-7992. [63] Ishida N,Fujita D. Chemical-state imaging of Li using scanning Auger electron microscopy[J]. Journal of Electron Spectroscopy and Related Phenomena ,2013,186:39-43. [64] Lipson A L,Hersam M C. Conductive scanning probe character- ization and nanopatterning of electronic and energy materials[J]. Journal of Physical Chemistry C ,2013,117(16):7953-7963. [65] Parz P,Fuchsbichler B,Koller S, et al. Charging-induced defect formation in Li x CoO 2 battery cathodes studied by positron annih- ilation spectroscopy[J]. Applied Physics Letters ,2013,102(15). [66] Niehoff P,Passerini S,Winter M. Interface investigations of a commercial lithium ion battery graphite anode material by sputter depth profile X-ray photoelectron spectroscopy[J]. Langmuir ,2013,29(19):5806-5816. [67] La Mantia F,Wessells C D,DESHAZER H D, et al. Reliable reference electrodes for lithium-ion batteries[J]. Electrochemistry Communications ,2013,31:141-144. [68] Ragavendran K R,Lu L,Hwang B J, et al. Trap state spectroscopy of LiM y Mn 2-y O 4 (M=Mn, Ni, Co):Guiding principles for electrochemical performance[J]. Journal of Physical Chemistry C ,2013,117(8):3812-3817. [69] Cai L,An K,Feng Z L, et al. In-situ observation of inhomogeneous degradation in large format Li-ion cells by neutron diffraction[J]. Journal of Power Sources ,2013,236:163-168. [70] Nakagawa H,Domi Y,Doi T, et al. In situ Raman study on the structural degradation of a graphite composite negative-electrode and the influence of the salt in the electrolyte solution[J]. Journal of Power Sources ,2013,236:138-144. [71] Sugiyama J,Mukai K,Harada M, et al. Reactive surface area of the Li x (Co 1/3 Ni 1/3 Mn 1/3 )O 2 electrode determined by μ + SR and electrochemical measurements[J]. Physical Chemistry Chemical Physics ,2013,15(25):10402-10412. [72] Malmgren S,Ciosek K,Hahlin M, et al. Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy[J]. Electrochimica Acta ,2013,97:23-32. [73] Cai L,Liu Z C,An K, et al. Unraveling structural evolution of LiNi 0.5 Mn 1.5 O 4 by in situ neutron diffraction[J]. Journal of Materials Chemistry A ,2013,1(23):6908-6914. [74] Hayamizu K,Aihara Y. Lithium ion diffusion in solid electrolyte (Li 2 S) 7 (P 2 S 5 ) 0 measured by pulsed-gradient spin-echo 7 Li NMR spectroscopy[J]. Solid State Ionics ,2013,238:7-14. [75] Eshetu G G,Grugeon S,Gachot G, et al. LiFSI vs. LiPF 6 electrolytes in contact with lithiated graphite:Comparing thermal stabilities and identification of specific SEI-reinforcing additives[J]. Electrochimica Acta ,2013,102:133-141. [76] Mahootcheianasl N,Kim J H,Pieczonka N P W, et al. Multilayer electrolyte cell:A new tool for identifying electrochemical performances of high voltage cathode materials[J]. Electrochemistry Communications ,2013,32:1-4. [77] Liu D R,Wang Y,Xie Y S, et al. On the stress characteristics of graphite anode in commercial pouch lithium-ion battery[J]. Journal of Power Sources ,2013,232:29-33. [78] Moura S J,Stein J L,Fathy H K. Battery-health conscious power management in plug-in hybrid electric vehicles via electrochemical modeling and stochastic control[J]. IEEE Transactions on Control Systems Technology ,2013,21(3):679-694. [79] Min J H,Bae Y S,Kim J Y, et al. Self-organized artificial SEI for improving the cycling ability of silicon-based battery anode materials[J]. Bulletin of the Korean Chemical Society ,2013, 34(4):1296-1299. [80] Huang S,Fan F,Li J, et al. Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries[J]. Acta Materialia ,2013,61(12):4354-4364. [81] Noh H J,Chen Z H,Yoon C S, et al. Cathode material with nanorod structure An application for advanced high-energy and safe lithium batteries[J]. Chemistry of Materials ,2013,25(10):2109-2115. [82] Rad M S,Danilov D L,Baghalha M, et al. Adaptive thermal modeling of Li-ion batteries[J]. Electrochimica Acta ,2013,102:183-195. [83] Murashko K,Pyrhonen J,Laurila L. Three-dimensional thermal model of a lithium ion battery for hybrid mobile working machines:Determination of the model parameters in a pouch cell[J]. IEEE Transactions on Energy Conversion ,2013,28(2):335-343. [84] Wang J J,Tang Y J,Yang J L, et al. Nature of LiFePO 4 aging process:Roles of impurity phases[J]. Journal of Power Sources ,2013,238:454-463. [85] Marcicki J,Canova M,Conlisk A T, et al. Design and parametrization analysis of a reduced-order electrochemical model of graphite/LiFePO 4 cells for SOC/SOH estimation[J]. Journal of Power Sources ,2013,237:310-324. [86] Lu D S,Xu M Q,Zhou L, et al. Failure mechanism of graphite/LiNi 0.5 Mn 1.5 O 4 cells at high voltage and elevated temperature[J]. Journal of The Electrochemical Society ,2013,160(5):A3138-A3143. [87] Kim Y S,Cho Y G,Odkhuu D, et al. A physical organogel electrolyte:Characterized by in situ thermo-irreversible gelation and single-ion-predominent conduction[R]//Scientific Reports,2013,3. [88] Gardarsson J S,Blanchard D,Sveinbjornsson D, et al. Li-ion conduction in the LiBH 4 :Lil system from density functional theory calculations and quasi-elastic neutron scattering[J]. Journal of Physical Chemistry C ,2013,117(18):9084-9091. [89] Jorn R,Kumar R,Abraham D P, et al. Atomistic modeling of the electrode-electrolyte interface in Li-ion energy storage systems:Electrolyte structuring[J]. Journal of Physical Chemistry C ,2013,117(8):3747-3761. [90] Kulish V V,Ng M F,Malyi O I, et al. Improved binding and stability in Si/CNT hybrid nanostructures via interfacial functionalization:A first-principles study[J]. Rsc . Advances ,2013,3(22):8446-8453. [91] Morris A J,Needs R J,Salager E, et al. Lithiation of silicon via lithium Zintl-defect complexes from first principles[J]. Physical Review B ,2013,87(17). [92] Plett G L. Algebraic solution for modeling sei layer growth[J]. Ecs Electrochemistry Letters ,2013,2(7):A63-A65. [93] Shi S Q,Qi Y,Li H, et al. Defect thermodynamics and diffusion mechanisms in Li 2 CO 3 and implications for the solid electrolyte interphase in Li-ion batteries[J]. Journal of Physical Chemistry C ,2013,117(17):8579-8593. [94] Zhang Y,Zhao Y S,Chen C F. Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites[J]. Physical Review B ,2013,87(13). [95] Hautier G,Jain A,Mueller T, et al. Designing multielectron lithium-ion phosphate cathodes by mixing transition metals[J]. Chemistry of Materials ,2013,25(10):2064-2074. [96] Lee S,Park J,Sastry A M, et al. Molecular dynamics simulations of SOC-dependent elasticity of Li x Mn 2 O 4 spinels in Li-ion batteries[J]. Journal of The Electrochemical Society ,2013, 160(6):A968-A972. [97] Cubuk E D,Wang W L,Zhao K J, et al. Morphological evolution of Si nanowires upon lithiation:A first-principles multiscale model[J]. Nano Letters ,2013,13(5):2011-2015. [98] Borkiewicz O J,Chapman K W,Chupas P J. Mapping spatially inhomogeneous electrochemical reactions in battery electrodes using high energy X-rays[J]. Physical Chemistry Chemical Physics ,2013,15(22):8466-8469. [99] Chou C Y,Hwang G S. Role of interface in the lithiation of silicon-graphene composites:A first principles study[J]. Journal of Physical Chemistry C ,2013,117(19):9598-9604. [100] Tanaka Y,Ohno T. Two dimensional Li diffusion in ion-conductive lithium lanthanum titanates[J]. Ecs Electrochemistry Letters ,2013,2(7):A53-A55. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 陈志城, 李宗旭, 蔡玲, 刘易斯. 柔性金属空气电池的发展现状及未来展望[J]. 储能科学与技术, 2022, 11(5): 1401-1410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||