储能科学与技术 ›› 2013, Vol. 2 ›› Issue (6): 565-576.doi: 10.3969/j.issn.2095-4239.2013.06.002
闫勇, 徐凯琪, 林明翔, 唐代春, 董金平, 孙洋, 陈彬, 王昊, 贲留斌, 黄学杰
收稿日期:
2013-10-21
修回日期:
2013-10-22
出版日期:
2013-12-19
发布日期:
2013-12-19
通讯作者:
黄学杰,研究员,E-mail:xjhuang@jphy.ac.cn.
作者简介:
闫勇(1988--),男,博士研究生,研究方向为锂离子电池电极材料,E-mail:yanyong19881202@126.com
YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, CHEN Bin, WANG Hao, BEN Liubin, HUANG Xuejie
Received:
2013-10-21
Revised:
2013-10-22
Online:
2013-12-19
Published:
2013-12-19
摘要: 该文是一篇近两个月的锂电池文献评述,我们以"lithium"和"battery*"为关键词检索了Web of Science从2013年8月1日至2013年9月30日上线的锂电池研究论文,共有903篇,选择其中100篇加以评论.层状氧化物正极材料的研究包括充放电循环过程中的反应机理,结构衍变以及制备条件对材料性能的影响等,高电压的尖晶石结构LiNi0.5M1.5O4材料的结构分析,改性以及与电解液的匹配受到人们较多的关注.高容量的Si基负极材料一直是研究的热点,本期碳材料与锡,电解液添加剂,锂硫电池和锂空气电池均有多篇研究论文,理论模拟工作扩展到固体电解质,电解液添加剂作用机理,锂空气电池电极过程等.除了这些以材料为主的研究之外,针对电池的原位分析,电池模型的研究论文也大量出现.
中图分类号:
闫勇, 徐凯琪, 林明翔, 唐代春, 董金平, 孙洋, 陈彬, 王昊, 贲留斌, 黄学杰. 锂电池百篇论文点评(2013.8.1--2013.9.30)[J]. 储能科学与技术, 2013, 2(6): 565-576.
YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, CHEN Bin, WANG Hao, BEN Liubin, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Aug. 1,2013 to Sept. 30,2013)[J]. Energy Storage Science and Technology, 2013, 2(6): 565-576.
[1] Wang C C,Jarvis K A,Ferreira P J, et al . Effect of synthesis conditions on the first charge and reversible capacities of lithium-rich layered oxide cathodes[J]. Chemistry of Materials , 2013,25(15):3267-3275. [2] Zheng J M,Wu X B,Yang Y. Improved electrochemical performance of Li[Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 ]O 2 cathode material by fluorine incorporation[J]. Electrochimica Acta ,2013,105:200-208. [3] Chen W C,Song Y F,Wang C C, et al . Study on the synthesis-microstructure-performance relationship of layered Li-excess nickel-manganese oxide as a Li-ion battery cathode prepared by high-temperature calcination[J]. Journal of Materials Chemistry A ,2013,1(36):10847-10856. [4] Mccalla E,Rowe A W,Camardese J, et al . The role of metal site vacancies in promoting Li-Mn-Ni-O layered solid solutions[J]. Chemistry of Materials ,2013,25(13):2716-2721. [5] Wang J,He X,Paillard E, et al . Improved rate capability of layered Li-rich cathode for lithium ion battery by electrochemical treatment[J]. ECS Electrochemistry Letters ,2013,2(8):A78-A80. [6] Yamashita Y,Barpanda P,Yamada Y, et al . Demonstration of Co 3 + /Co 2+ electrochemical activity in LiCoBO 3 cathode at 4.0 V[J]. ECS Electrochemistry Letters ,2013,2(8):A75-A77. [7] Jadhav H S,Cho M S, Kalubarme R S, et al . Influence of B 2 O 3 addition on the ionic conductivity of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 glass ceramics[J]. Journal of Power Sources ,2013,241:502-508. [8] Zhang X H,Luo D,Li G S, et al . Self-adjusted oxygen- partial-pressure approach to the improved electrochemical performance of electrode Li[Li 0.14 Mn 0.47 Ni 0.25 Co 0.14 ]O 2 for lithium- ion batteries [J]. Journal of Materials Chemistry A ,2013,1(34): 9721-9729. [9] Boulineau A,Simonin L,Colin J F, et al . First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries[J]. Nano Letters , 2013,13(8):3857-3863. [10] Lee E S,Huq A,Manthiram A. Understanding the effect of synthesis temperature on the structural and electrochemical characteristics of layered-spinel composite cathodes for lithium-ion batteries[J]. Journal of Power Sources ,2013,240:193-203. [11] Maugeri L,Iadecola A,Simonelli L, et al . Study of local disorder in LiMn(Cr,Ni)O 2 compounds by extended X-ray absorption fine structure measurements[J]. Journal of Power Sources ,2013, 242:202-207. [12] Sathiya M,Rousse G,Ramesha K, et al . Reversible anionic redox chemistry in high-capacity layered-oxide electrodes[J]. Nature Materials ,2013,12(9):827-835. [13] Mizokawa T,Wakisaka Y,Sudayama T, et al . Role of oxygen holes in Li x CoO 2 revealed by soft X-ray spectroscopy[J]. Physical Review Letters ,2013,111(5):056404. [14] Gallagher K G,Croy J R,Balasubramanian M, et al . Correlating hysteresis and voltage fade in lithium-and manganese-rich layered transition-metal oxide electrodes[J]. Electrochemistry Communications , 2013,33:96-98. [15] Menzel M, Schlifke A,Falk M, et al . Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis[J]. Spectrochimica Acta Part B : Atomic Spectroscopy ,2013,85:62-70. [16] Lee E H,Park J H, Kim J M, et al . Direct surface modification of high-voltage LiCoO 2 cathodes by UV-cured nanothickness poly(ethylene glycol diacrylate) gel polymer electrolytes[J]. Electrochimica Acta ,2013,104:249-254. [17] Esaki S, Nishijima M,Yao T. Cycle performance improvement of LiMn 2 O 4 cathode for lithium ion battery by "nano inclusion" formation[J]. ECS Electrochemistry Letters ,2013,2(10): A93-A97. [18] Mukai K,Ikedo Y,Kamazawa K, et al . The gradient distribution of Ni ions in cation-disordered Li[Ni 1/2 Mn 3/2 ]O 4 clarified by muon-spin rotation and relaxation (mu SR)[J]. RSC Advances , 2013,3(29):11634-11639. [19] Moorhead R Z,Chemelewski K R,Goodenough J B, et al . Magnetic measurements as a viable tool to assess the relative degrees of cation ordering and Mn 3+ content in doped LiMn 1.5 Ni 0.5 O 4 spinel cathodes[J]. Journal of Materials Chemistry A ,2013,1(36):10745-10752. [20] Xiao J,Yu X, Zheng J, et al . Interplay between two-phase and solid solution reactions in high voltage spinel cathode material for lithium ion batteries[J]. Journal of Power Sources ,2013, 242:736-741. [21] Zhu W,Liu D,Trottier J, et al . In-situ X-ray diffraction study of the phase evolution in undoped and Cr-doped Li x Mn 1.5 Ni 0.5 O 4 (0.1≤ x ≤1.0) 5 V cathode materials[J]. Journal of Power Sources , 2013,242:236-243. [22] Kodama K,Igawa N,Shamoto S, et al . Local lattice distortion caused by short range charge ordering in LiMn 2 O 4 [J]. Journal of the Physical Society of Japan ,2013,82(9):094601. [23] Chemelewski K R,Lee E S,Li W, et al . Factors influencing the electrochemical properties of high-voltage spinel cathodes: Relative impact of morphology and cation ordering[J]. Chemistry of Materials ,2013,25(14):2890-2897. [24] Cheng F Q,Xin Y L,Huang Y Y, et al . Enhanced electrochemical performances of 5 V spinel LiMn 1.58 Ni 0.42 O 4 cathode materials by coating with LiAlO 2 [J]. Journal of Power Sources ,2013,239:181-188. [25] Jafta C J,Mathe M K,Manyala N, et al . Microwave-assisted synthesis of high-voltage nanostructured LiMn 1.5 Ni 0.5 O 4 Spinel: Tuning the Mn 3+ content and electrochemical performance[J]. ACS Applied Materials & Interfaces ,2013,5(15):7592-7598. [26] Brutti S,Greco G,Reale P, et al . Insights about the irreversible capacity of LiNi 0.5 Mn 1.5 O 4 cathode materials in lithium batteries[J]. Electrochimica Acta ,2013,106:483-493. [27] Li C L,Zhao Y Y,Zhang H M, et al . Compatibility between LiNi 0.5 Mn 1.5 O 4 and electrolyte based upon lithium bis (oxalate) borate and sulfolane for high voltage lithium-ion batteries[J]. Electrochimica Acta ,2013,104:134-139. [28] Arai H,Sato K,Orikasa Y, et al . Phase transition kinetics of LiNi0.5Mn1.5O4 electrodes studied by in situ X-ray absorption near-edge structure and X-ray diffraction analysis[J]. Journal of Materials Chemistry A ,2013,1(35):10442-10449. [29] Pieczonka N P W,Liu Z Y,Lu P, et al . Understanding transition-metal dissolution behavior in LiNi 0.5 Mn 1.5 O 4 high-voltage spinel for lithium ion batteries[J]. Journal of Physical Chemistry C ,2013,117(31):15947-15957. [30] Omenya F,Chernova N A,Wang Q, et al . The structural and electrochemical impact of Li and Fe site substitution in LiFePO 4 [J]. Chemistry of Materials ,2013,25(13):2691-2699. [31] Sobkowiak A,Roberts M R,Younesi R, et al . Understanding and controlling the surface chemistry of LiFeSO 4 for an enhanced cathode functionality[J]. Chemistry of Materials ,2013,25(15):3020-3029. [32] Bridges C A,Harrison K L,Unocic R R, et al . Defect chemistry of phospho-olivine nanoparticles synthesized by a microwave- assisted solvothermal process[J]. Journal of Solid State Chemistry , 2013,205:197-204. [33] Chae I S,Koyano M,Sukegawa T, et al . Redox equilibrium of a zwitterionic radical polymer in a non-aqueous electrolyte as a novel Li + host material in a Li-ion battery[J]. Journal of Materials Chemistry A ,2013,1(34):9608-9611. [34] Jeong S,Lee J P,Ko M, et al . Etched graphite with internally grown Si nanowires from pores as an anode for high density Li-ion batteries[J]. Nano Letters ,2013,13(7):3403-3407. [35] Erk C,Brezesinski T,Sommer H, et al . Toward silicon anodes for next-generation lithium ion batteries:A comparative performance study of various polymer binders and silicon nanopowders[J]. ACS Applied Materials & Interfaces ,2013, 5(15):7299-7307. [36] Lotfabad E M,Kalisvaart P,Cui K,et al. ALD TiO 2 coated silicon nanowires for lithium ion battery anodes with enhanced cycling stability and coulombic efficiency[J]. Physical Chemistry Chemical Physics ,2013,15(32):13646-13657. [37] Bhandavat R,Singh G. Stable and efficient Li-ion battery anodes prepared from polymer-derived silicon oxycarbide-carbon nanotube shell/core composites[J]. Journal of Physical Chemistry C ,2013, 117(23):11899-11905. [38] Wu H,Yu G H,Pan L J, et al . Stable Li-ion battery anodes by in - situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles [J]. Nature Communications ,2013,4: [39] Philippe B,Dedryvere R,Gorgoi M, et al . Improved performances of nanosilicon electrodes using the salt LiFSI:A photoelectron spectroscopy study[J]. Journal of the American Chemical Society , 2013,135(26):9829-9842. [40] Nie A M,Gan L Y,Chong Y C, et al . Atomic-scale observation of lithiation reaction front in nanoscale SnO 2 materials[J]. ACS Nano ,2013,7(7):6203-6211. [41] Delpuech N,Dupre N,Mazouzi D, et al . Correlation between irreversible capacity and electrolyte solvents degradation probed by NMR in Si-based negative electrode of Li-ion cell[J]. Electrochemistry Communications ,2013,33:72-75. [42] Zhou S,Yang X G, Xie J, et al . Titanium silicide nanonet as a new material platform for advanced lithium ion battery applications[J]. Chemical Communications ,2013,49(58):6470-6476. [43] Deng J W,Yan C L,Yang L C, et al . Sandwich-Stacked SnO 2 /Cu Hybrid Nanosheets as Multichannel Anodes for Lithium Ion Batteries[J]. ACS Nano ,2013,7(8):6948-6954. [44] Shin J,Ryu W H,Park K S, et al . Morphological evolution of carbon nanofibers encapsulating SnCo alloys and its effect on growth of the solid electrolyte interphase layer[J]. ACS Nano ,2013,7(8):7330-7341. [45] Ma J Y,Xiang D,Li Z Q, et al . TiO 2 nanocrystal embedded ordered mesoporous carbons as anode materials for lithium-ion batteries with highly reversible capacity and rate performance[J]. Cryst. Eng. Comm. ,2013,15(34):6800-6807. [46] Wang S C,Yang J,Zhou X Y, et al . Layer-by-layer assembled sandwich-like carbon nanotubes/graphene oxide composite as high- performance electrodes for lithium-ion batteries[J]. International Journal of Electrochemical Science ,2013,8(7):9692-9703. [47] Momma T,Jeong M,Yokoshima T, et al . Sn-O-C composite anode for Li secondary battery synthesized by an electrodeposition technique using organic carbonate electrolyte[J]. Journal of Power Sources ,2013,242:527-532. [48] Wang J J,Chen-wiegart Y C K,Wang J. In situ chemical mapping of a lithium-ion battery using full-field hard X-ray spectroscopic imaging[J]. Chemical Communications ,2013,49(58):6480-6482. [49] Fan Z J,Yan J,Ning G Q, et al . Porous graphene networks as high performance anode materials for lithium ion batteries[J]. Carbon , 2013,60:558-561. [50] Li B,Zhang Q Y,Zhang C L, et al . One-step nanocasting synthesis of mesostructured TiO 2 /graphitic carbon composite as an anode material for lithium-ion battery[J]. International Journal of Electrochemical Science ,2013,8(6):8414-8421. [51] Shi S,Xu C J,Yang C, et al . Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property[J]. Scientific Reports ,2013,3:2598. [52] Li J T,Su H,Huang L, et al . Investigation of interfacial processes in graphite thin film anodes of lithium-ion batteries by both in situ and ex situ infrared spectroscopy[J]. Science China : Chemistry ,2013,56(7):992-996. [53] Li J L,Yao R M,Bai J, et al . Two-dimensional mesoporous carbon nanosheets as a high-performance anode material for lithium-ion batteries[J]. Chempluschem ,2013,78(8):797-800. [54] Hori H,Shikano M,Kobayashi H, et al . Analysis of hard carbon for lithium-ion batteries by hard X-ray photoelectron spectroscopy[J]. Journal of Power Sources ,2013,242:844-847. [55] Lee B S,Seo J H,Son S B, et al . Face-centered-cubic lithium crystals formed in mesopores of carbon nanofiber electrodes[J]. ACS Nano ,2013,7(7):5801-5807. [56] Ai W,Xie L H,Du Z Z, et al . A novel graphene-polysulfide anode material for high-performance lithium-ion batteries[J]. Scientific Reports ,2013,3:2341. [57] Hubaud A A,Schroeder D J,Key B, et al . Low temperature stabilization of cubic (Li 7 -x Al x /3 ) La 3 Zr 2 O 12 :Role of aluminum during formation[J]. Journal of Materials Chemistry A ,2013, 1(31):8813-8818. [58] Kim S,Hirayama M,Taminato S, et al . Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte[J]. Dalton Transactions ,2013,42(36): 13112-13117. [59] Morimoto H,Awano H,Terashima J, et al . Preparation of lithium ion conducting solid electrolyte of NASICON-type Li 1+ x Al x Ti 2- x (PO 4 ) 3 ( x =0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO 2 cathode for lithium cell[J]. Journal of Power Sources ,2013,240:636-643. [60] Do C,Lunkenheimer P,Diddens D, et al . Li + transport in poly(ethylene oxide) based electrolytes:Neutron scattering, dielectric Spectroscopy,and molecular dynamics Simulations[J]. Physical Review Letters ,2013,111(1):18301. [61] Akita Y,Segawa M,Munakata H, et al . In-situ fourier transform infrared spectroscopic analysis on dynamic behavior of electrolyte solution on LiFePO 4 cathode[J]. Journal of Power Sources , 2013,239:175-180. [62] Browning K L,Baggetto L,Unocic R R, et al . Gas evolution from cathode materials:A pathway to solvent decomposition concomitant to SEI formation[J]. Journal of Power Sources , 2013,239:341-346. [63] Perez-villar S,Lanz P,Schneider H, et al . Characterization of a model solid electrolyte interphase/carbon interface by combined in situ Raman/Fourier transform infrared microscopy[J]. Electrochimica Acta ,2013,106:506-515. [64] Lim H K,Lim H D,Park K Y, et al . Toward a lithium-"air" battery:The effect of CO 2 on the chemistry of a lithium-oxygen cell[J]. Journal of the American Chemical Society ,2013, 135(26):9733-9742. [65] Wen R,Hong M,Byon H R. In situ AFM imaging of Li-O 2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte[J]. Journal of the American Chemical Society ,2013,135(29):10870-10876. [66] Gallant B M,Kwabi D G,Mitchell R R, et al . Influence of Li 2 O 2 morphology on oxygen reduction and evolution kinetics in Li-O 2 batteries[J]. Energy & Environmental Science ,2013,6(8): 2518-28. [67] Lu J,Lei Y,Lau K C, et al . A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries[J]. Nature Communications ,2013,4:2383. [68] Zheng J M,Gu M,Chen H H, et al . Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium-sulfur batteries[J]. Journal of Materials Chemistry A ,2013,1(29):8464-8470. [69] Walus S,Barchasz C,Colin J F, et al . New insight into the working mechanism of lithium-sulfur batteries:In situ and operando X-ray diffraction characterization[J]. Chemical Communications , 2013,49(72):7899-7901. [70] Lecuyer M,Gaubicher J,Deschamps M, et al . Structural changes of a Li/S rechargeable cell in lithium metal polymer technology[J]. Journal of Power Sources ,2013,241:249-254. [71] Borhani H S,Kieschnick M,Motemani Y, et al . High- throughput compositional and structural evaluation of a Li a (Ni x Mn y Co z ) O r thin film battery materials library[J]. ACS Combinatorial Science , 2013,15(8):401-409. [72] Maher K,Yazami R. Effect of overcharge on entropy and enthalpy of lithium-ion batteries[J]. Electrochimica Acta ,2013,101: 71-78. [73] Mukai K,Kishida Y,Nozaki H, et al . Structural phase transition from rhombohedral (R3m) to monoclinic (C2/m) symmetry in lithium overstoichiometric Li 1+ δ Co 1- δ O 2- δ [J]. Chemistry of Materials , 2013,25(14):2828-2837. [74] Herklotz M,Scheiba F,Hinterstein M, et al . Advances in in situ powder diffraction of battery materials:A case study of the new beamline PO2.1 at DESY,hamburg[J]. Journal of Applied Crystallography ,2013,46:1117-1127. [75] Gross T,Giebeler L,Hess C. Novel in situ cell for Raman diagnostics of lithium-ion batteries[J]. Review of Scientific Instruments ,2013,84(7):073109. [76] Bao W J,Zhuang Q C,Xu S D, et al . Investigation of electronic and ionic transport properties in α-MoO 3 cathode material by electrochemical impedance spectroscopy[J]. Ionics ,2013, 19(7):1005-1013. [77] Lenninger M,Froeis T,Scheiderbauer M, et al . High current density 3D electrodes manufactured by technical embroidery[J]. Journal of Solid State Electrochemistry ,2013,17(8):2303-2309. [78] Uemura T, Goto K,Ogawa M, et al . All-solid secondary batteries with sulfide-based thin film electrolytes[J]. Journal of Power Sources ,2013,240:510-514. [79] Xue X Y,Deng P,Yuan S, et al . CuO/PVDF nanocomposite anode for a piezo-driven self-charging lithium battery[J]. Energy & Environmental Science ,2013,6(9):2615-2620. [80] Fridman K,Sharabi R,Elazari R, et al . A new advanced lithium ion battery:Combination of high performance amorphous columnar silicon thin film anode,5 V LiNi 0.5 Mn 1.5 O 4 spinel cathode and fluoroethylene carbonate-based electrolyte solution[J]. Electrochemistry Communications ,2013,33:31-34. [81] Waag W,Fleischer C,Sauer D U. Adaptive on-line prediction of the available power of lithium-ion batteries[J]. Journal of Power Sources ,2013,242:548-559. [82] Wetz D A,Shrestha B,Novak P M. Pulsed evaluation of high power electrochemical energy storage devices[J]. IEEE Transactions on Dielectrics and Electrical Insulation ,2013,20(4):1040-1048. [83] Fridman K,Sharabi R,Markevich E, et al . An advanced lithium ion battery based on amorphous silicon film anode and integrated x Li 2 MnO 3 ·(1- x )LiNi y Mn z Co 1- y - z O 2 cathode[J]. ECS Electrochemistry Letters ,2013,2(8):A84-A87. [84] Ansean D,Gonzalez M,Viera J C, et al . Fast charging technique for high power lithium iron phosphate batteries:A cycle life analysis[J]. Journal of Power Sources ,2013,239:9-15. [85] Kabitz S,Gerschler J B,Ecker M, et al . Cycle and calendar life study of a graphite vertical bar LiNi 1/3 Mn 1/3 Co 1/3 O 2 Li-ion high energy system. Part A:Full cell characterization[J]. Journal of Power Sources ,2013,239:572-583. [86] Schwunk S,Armbruster N,Straub S, et al . Particle filter for state of charge and state of health estimation for lithium-iron phosphate batteries[J]. Journal of Power Sources ,2013,239:705-710. [87] Tompsett D A,Islam M S. Electrochemistry of hollandite alpha- MnO 2 :Li-ion and Na-ion insertion and Li 2 O incorporation[J]. Chemistry of Materials ,2013,25(12): 2515-2526. [88] Han S,Park J,Lu W, et al . Numerical study of grain boundary effect on Li + effective diffusivity and intercalation-induced stresses in Li-ion battery active materials[J]. Journal of Power Sources , 2013,240:155-167. [89] Ling C,Mizuno F. Phase stability of post-spinel compound AMn 2 O 4 (A=Li,Na,or Mg) and its application as a rechargeable battery cathode[J]. Chemistry of Materials ,2013,25(15):3062-3071. [90] Gong X,Huang J M,Chen Y, et al . Vibrational contribution to the thermodynamic properties of lithium ion batteries system: A first principles calculations[J]. International Journal of Electrochemical Science ,2013,8(8):10549-10556. [91] Dapp W B,Muser M H. Redox reactions with empirical potentials:Atomistic battery discharge simulations[J]. Journal of Chemical Physics ,2013,139(6):4106. [92] Chang K K,HallstedT B,Music D, et al . Thermodynamic description of the layered O 3 and O 2 structural LiCoO 2 -CoO 2 pseudo-binary systems[J]. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry ,2013,41:6-15. [93] Kishida I,Orita K,Nakamura A, et al . Thermodynamic analysis using first-principles calculations of phases and structures of Li x Ni 0.5 Mn 1.5 O 4 (0≤ x ≤1)[J]. Journal of Power Sources ,2013, 241:1-5. [94] Lee E,Persson K A. Solid-solution Li intercalation as a function of cation order/disorder in the high-voltage Li x Ni 0.5 Mn 1.5 O 4 spinel[J]. Chemistry of Materials ,2013,25(14):2885-2889. [95] Dianat A,Seriani N,Bobeth M, et al . Effects of Al-doping on the properties of Li-Mn-Ni-O cathode materials for Li-ion batteries:An ab initio study[J]. Journal of Materials Chemistry A ,2013, 1(32):9273-9280. [96] Fan X F,Zheng W T,Kuo J L, et al . Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries[J]. ACS Applied Materials & Interfaces , 2013,5(16):7793-7797. [97] Gu M,Wang Z G,Connell J G, et al . Electronic origin for the phase transition from amorphous Li x Si to crystalline Li 15 Si 4 [J]. ACS Nano ,2013,7(7):6303-6309. [98] Kang S Y,Mo Y F,Ong S P, et al . A facile mechanism for recharging Li 2 O 2 in Li-O 2 batteries[J]. Chemistry of Materials , 2013,25(16):3328-3336. [99] Chamas M,Sougrati M T,Reibel C, et al . Quantitative analysis of the initial restructuring step of nanostructured FeSn 2 -based anodes for Li-ion batteries[J]. Chemistry of Materials ,2013, 25(12):2410-2420. [100] Ushirogata K,Sodeyama K,Okuno Y, et al . Additive effect on reductive decomposition and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium-ion battery[J]. Journal of the American Chemical Society ,2013,135(32): 11967-11974. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||