[1] Ma Hongyun(马洪运),Jia Zhijun(贾志军),Wu Xuran(吴旭冉), et al. Fundamentals of electrochemistry(Ⅳ) Electrode kinetics[J] . Energy Storage Science and Technology (储能科学与技术),2013,2(3):267-271. [2] Kurzweil P,Fischle H J. A new monitoring method for electrochemical aggregates by impedance spectroscopy[J] . Journal of Power Sources ,2004,127(1-2):331-340. [3] Jia Zhijun,Wang Baoguo,Song Shiqiang, et al. Effect of polyhydroxy-alcohol on the electrochemical behavior of the positive electrolyte for vanadium redox flow batteries[J] . Journal of the Electrochemical Society ,2012,159(6):A843-A847. [4] Chen Z,Yu A,Higgins D, et al. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application[J] . Nano Letters ,2012,12(4):1946-1952. [5] Liang Y,Wang H,Zhou J, et al. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts[J] . Journal of the American Chemical Society ,2012,134(7):3517-3523. [6] Suntivich J,May K J,Gasteiger H A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J] . Science ,2011,334(6061):1383-1385. [7] Zhou D B,Poorten H V. Electrochemical characterization of oxygen reduction on teflon-bonded gas-diffusion electrodes[J] . Electrochimica Acta ,1995,40(12):1819-1826. [8] Noack J,Cremers C,Bayer D, et al. Development and characterization of a 280 cm 2 vanadium/oxygen fuel cell[J] . Journal of Power Sources ,2014,253:397-403. [9] Thiele D,Zuettel A. Electrochemical characterisation of air electrodes based on La 0.6 Sr 0.4 CoO 3 and carbon nanotubes[J] . Journal of Power Sources ,2008,183(2):590-594. [10] Allen J,Bard L R F. Electrochemical Methods Fundamental and Applications[M]. New York:John Wiley & Sons,Inc.,2001:386. [11] Wabner D,Holze R,Schmittinger P. Impedance of an oxygen reduction gas-dffusion electrode[J] . Zeitschrift Fur Naturforschung Section B-A Journal of Chemical Sciences ,1984,39(2):157-162. [12] Arai H,Muller S,Haas O. AC impedance analysis of bifunctional air electrodes for metal-air batteries[J] . Journal of the Electrochemical Society ,2000,147(10):3584-3591. [13] Bultel Y,Genies L,Antoine O, et al. Modeling impedance diagrams of active layers in gas diffusion electrodes:Diffusion, ohmic drop effects and multistep reactions[J] . Journal of Electroanalytical Chemistry ,2002,527(1-2):143-155. [14] Velraj S,Zhu J H. Sm 0.5 Sr 0.5 CoO 3- δ A new bi-functional catalyst for rechargeable metal-air battery applications[J] . Journal of Power Sources ,2013,227:48-52. [15] Zhuang S,Huang K,Huang C, et al. Preparation of silver-modified La 0.6 Ca 0.4 CoO 3 binary electrocatalyst for bi-functional air electrodes in alkaline medium[J] . Journal of Power Sources ,2011,196(8):4019-4025. [16] Mehta M,Mixon G,Zheng J P, et al. Analytical electrochemical impedance modeling of Li-air batteries under DC discharge[J] . Journal of the Electrochemical Society ,2013,160(11):A2033-A2045. [17] Chen Z,Yu A,Ahmed R, et al. Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery[J] . Electrochimica Acta ,2012,69:295-300. [18] Huang H,Zhang W K,Li M C, et al. Carbon nanotubes as a secondary support of a catalyst layer in a gas diffusion electrode for metal air batteries[J] . Journal of Colloid and Interface Science ,2005,284(2):593-599. [19] Sun C N,Delnick F M,Aaron D S, et al. Probing electrode losses in all-vanadium redox flow batteries with impedance spectroscopy[J] . Ecs Electrochemistry Letters ,2013,2(5):A43-A45. |