[1] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3):587-603.
[2] HASKELL N A. The dispersion of surface waves on multi-layered media[J]. Bulletin of the Seismological Society of America, 1953, 43(1):17-34.
[3] REHMAN A U, POTEL C, BELLEVAL J F D. Numerical modeling of the effects on reflected acoustic field for the changes in internal layer orientation of a composite[J]. Ultrasonics, 1998, 36(1/2/3/4/5):343-348.
[4] 沈越, 黄云辉, 邓哲, 等. 一种可控温电池超声测试盒及测试系统:ZL 201720891902.8[P]. 2018-02-23. SHEN Yue, HUANG Yunhui, DENG Zhe, et al. A type of temperaturecontrollable testing box and system for battery ultrasonic detection:ZL 201720891902.8[P]. 2018-02-23.
[5] VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1/2):269-281.
[6] LIU Q Q, XIONG D J, PETIBON R, et al. Gas evolution during unwanted lithium plating in Li-ion cells with EC-based or EC-free electrolytes[J]. Journal of the Electrochemical Society, 2016, 163(14):A3010-A3015.
[7] PILLER S, PERRIN M, JOSSEN A. Methods for state-of-charge determination and their applications[J]. Journal of Power Sources, 2001, 96(1):113-120.
[8] ZOU Y, HU X, MA H, et al. Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles[J]. Journal of Power Sources, 2015, 273:793-803.
[9] CANNARELLA J, ARNOLD C B. State of health and charge measurements in lithium-ion batteries using mechanical stress[J]. Journal of Power Sources, 2014, 269:7-14.
[10] DAI H, YU C, WEI X, et al. State of charge estimation for lithium-ion pouch batteries based on stress measurement[J]. Energy, 2017, 129:16-27.
[11] SENVSHVN A, DOLOTKO O, MÚHLBAUER M J, et al. Lithium intercalation into graphitic carbons revisited:Experimental evidence for twisted bilayer behavior[J]. Journal of the Electrochemical Society, 2013, 160(5):A3198-A3205.
[12] GOLD L, BACH T, VIRSIK W, et al. Probing lithium-ion batteries' state-of-charge using ultrasonic transmission-Concept and laboratory testing[J]. Journal of Power Sources, 2017, 343:536-544.
[13] 沈越, 邓哲, 黄云辉. 一种监测锂离子电池荷电状态和健康状态的方法及其装置:ZL 20161103786.X[P]. 2018-03-20. SHEN Yue, DENG Zhe, HUANG Yunhui. A method and a device for monitoring SOC/SOH of lithium-ion battery:ZL 20161103786.X[P].2018-03-20.
[14] HSIEH A G, BHADRA S, HERTZBERG B J, et al. Electrochemicalacoustic time of flight:in operando correlation of physical dynamics with battery charge and health[J]. Energy & Environmental Science, 2015, 8(5):1569-1577.
[15] DAVIES G, KNEHR K W, TASSELL B V, et al. State of charge and state of health estimation using electrochemical acoustic time of flight analysis[J]. Journal of the Electrochemical Society, 2017, 164(12):A2746-A2755.
[16] ARORA P, WHITE R E, DOYLE M. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145(10):3647-3667.
[17] LIN X, PARK J, LIU L, et al. A comprehensive capacity fade model and analysis for Li-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(10):A1701-A1710.
[18] WANG L, DENG D, LEV L C, et al. In-situ investigation of solidelectrolyte interphase formation on the anode of Li-ion batteries with atomic force microscopy[J]. Journal of Power Sources, 2014, 265:140-148.
[19] HARDWICK L J, MARCINEK M, BEER L, et al. An investigation of the effect of graphite degradation on irreversible capacity in lithiumion cells[J]. Journal of the Electrochemical Society, 2008, 155(6):A442-A447.
[20] YAZAMI R, REYNIER Y F. Mechanism of self-discharge in graphite-lithium anode[J]. Electrochimica Acta, 2002, 47(8):1217-1223.
[21] DUBARRY M, SVOBODA V, HWU R, et al. Incremental capacity analysis and close-to-equilibrium OCV measurements to quantify capacity fade in commercial rechargeable lithium batteries[J]. Electrochemical and Solid-state Letters, 2006, 9(10):A454-A457.
[22] SMITH A J, DAHN J R. Delta differential capacity analysis[J]. Journal of the Electrochemical Society, 2012, 159(3):A290-A293.
[23] EDDAHECH A, BRIAT O, VINASSA J M. Determination of lithiumion battery state-of-health based on constant-voltage charge phase[J]. Journal of Power Sources, 2014, 258:218-227.
[24] SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019(4):383-391.
[25] CANTRELL J H, YOST W T. Nonlinear ultrasonic characterization of fatigue microstructures[J]. International Journal of Fatigue, 2001, 23(S1):487-490.
[26] JHANG K Y. Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material:A review[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(1):123-135. |