储能科学与技术 ›› 2015, Vol. 4 ›› Issue (6): 569-576.doi: 10.3969/j.issn.2095-4239.2015.06.004
金玉红, 王莉, 何向明
收稿日期:
2015-05-14
出版日期:
2015-12-19
发布日期:
2015-12-19
通讯作者:
何向明,副研究员,研究方向为先进电池及其关键材料,E-mail:hexm@mail.tsinghua. edu.cn。
作者简介:
金玉红(1983—),男,博士,研究方向为新能源材料的制备及其应用,E-mail:buct0804@163.com;
基金资助:
JIN Yuhong, WANG Li, HE Xiangming
Received:
2015-05-14
Online:
2015-12-19
Published:
2015-12-19
摘要: 锂硒电池因其可观的体积比容量(3254 mA·h/cm3),已经引起了国内外研究学者们的广泛关注。本 文在介绍锂硒电池硒/碳正极材料的基础上,指出了锂硒电池目前存在的主要问题,并提出了可能的解决方案,最后对未来锂硒电池的研究方向做出了展望。
中图分类号:
金玉红, 王莉, 何向明. 锂硒电池研究进展[J]. 储能科学与技术, 2015, 4(6): 569-576.
JIN Yuhong, WANG Li, HE Xiangming. Research progress on lithium-selenium batteries[J]. Energy Storage Science and Technology, 2015, 4(6): 569-576.
[1] Armand M,Tarascon J M. Building better batteries[J]. Nature ,2008,451(7179):652-657. [2] Sun Y K,Myung S T,Park B C,Prakash J,Belharouak I,Amine K. High-energy cathode material for long-life and safe lithium batteries[J]. Nat. Mater. ,2009,8(4):320-324. [3] Poizot P,Laruelle S,Grugeon S,Dupont L,Tarascon J M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature ,2000,407(6803):496-499. [4] Goodenough J B,Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater. ,2010,22(3):587-603. [5] Ji X,Nazar L. Advances in Li-S batteries[J]. J. Mater. Chem. ,2010,20(44):9821-9826. [6] Bruce P G,Freunberger S,Hardwick L,Tarascon J M. Li-O 2 and Li-S batteries with high energy storage[J]. Nat. Mater. ,2012,11(1):19-29. [7] Barghamadi M,Kapoor A,Wen C. A review on Li-S batteries as a high efficiency rechargeable lithium battery[J]. J. Electrochem. Soc. ,2013,160(8):A1256-A1263. [8] Evers S,Nazar L. New approaches for high energy density lithium-sulfur battery cathodes[J]. ACC Chem. Res. ,2013,46(5):1135-1143. [9] Ji X,Lee K T,Nazar L. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater. ,2009,8(6):500-506. [10] Jayaprakssh N,Shen J,Moqanty S,Corona A,Archer L A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angew. Chem. Int. Ed. ,2011,123(26):6026-6030. [11] She Z W,Li W,Cha J,Zheng G,Yang Y,McDowell M,Hsu P,Cui Y. Sulphur-TiO 2 yolk-shell nano architecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nat. Commun. ,2013,4:1331-1336. [12] Liang X,Wen Z,Liu Y,Wu M,Jin J,Zhang H,Wu X. Improved cycling performances of lithium sulfur batteries with LiNO 3 -modified electrolyte[J]. J. Power Sources ,2011,196(22):9839-9843. [13] Suo L,Hu Y S,Li H,Armand M,Chen L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nat. Commun. ,2014,4:1481-1489. [14] Zhou G,Li L,Wang D W,Shan X Y,Pei S,Cheng H M. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries[J]. Adv. Mater. ,2015,27(4):641-647. [15] Yao H,Yan K,Li W,Zheng G,Kong D,She Z W,Narasimhan V,Liang Z,Cui Y. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface[J]. Energy Environ. Sci. ,2014,7(10):3381-3390. [16] Yang C P,Yin Y X,Guo Y G. Elemental selenium for electrochemical energy storage[J]. J. Phys. Chem. Lett. ,2015,6(2):256-266. [17] Abouimrane A,Dambournet D,Chapman K,Chupas P,Weng W,Amine K. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode[J]. J. Am. Chem. Soc. ,2012,134(10):4505-4508. [18] Cui Y,Abouimrane A,Sun C J,Ren Y,Amine K. Li-Se battery:Absence of lithium polyselenides in carbonate based electrolyte[J]. Chem. Commun. ,2014,50(42):5576-5579. [19] Cui Y,Abouimrane A,Lu J,Bolin T,Ren Y,Weng W,Sun C,Maroni V,Heald S,Amine K. Lithiation mechanism of Li/SeS x ( x =0~7) batteries determined by in situ synchrotron X ray diffraction and X ray absorption spectroscopy[J]. J. Am. Chem. Soc. ,2013,135(21):8047-8056. [20] Yang C,Xin S,Yin Y,Ye H,Zhang J,Guo Y. An advanced selenium- carbon cathode for rechargeable lithium-selenium batteries[J]. Angew. Chem. Int. Ed. ,2013,52(32):8363-8367. [21] Luo C,Xu Y,Zhu Y,Liu Y,Zheng S,Liu Y,Langrock S,Wang C. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity[J]. ACS Nano ,2013,7(9):8003-8010. [22] Zeng L,Zeng W,Jiang Y,Wei X,Li W,Yang C,Zhu Y,Yu Y. A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li-Se and Na-Se batteries[J]. Adv. Energy. Mater. ,2015,5(4):doi: 10.1002/aenm.201401377. [23] Yi Z,Yuan L,Sun D,Li Z,Wu C,Yang W,Wen Y,Shan B,Huang Y. High-performance lithium-selenium batteries promoted by heteroatom-doped microporous carbon[J]. J. Mater. Chem. A ,2015,3(6):3059-3065. [24] Wang X,Zhang Z,Qu Y,Wang G,Lai Y,Li J. Solution-based synthesis of multi-walled carbon nanotube/selenium composites for high performance lithium-selenium battery[J]. J. Power Sources ,2015,287:247-252. [25] Zhang J,Fan L,Zhu Y,Xu Y,Liang J,Wei D,Qian Y. Selenium/interconnected porous hollow carbon bubbles composites as the cathodes of Li-Se batteries with high performance[J]. Nano Scale ,2014,6(21):12952-12957. [26] Zhang Z,Yang X,Guo Z,Qu Y,Li J,Lai Y. Selenium/carbon-rich core-shell composites as cathode materials for rechargeable lithium- selenium batteries[J]. J. Power Sources ,2015,279:88-93. [27] Jiang S,Zhang Z,Lai Y,Qu Y,Wang X,Li J. Selenium encapsulated into 3D interconnected hierarchical porous carbon aerogels for lithium-selenium batteries with high rate performance and cycling stability[J]. J. Power Sources ,2014,267:394-404. [28] Lai Y,Gan Y,Zhang Z,Chen W,Li J. Metal-organic frameworks-derived mesoporous carbon for high performance lithium-selenium battery[J]. Electrochim. Acta ,2014,146:134-141. [29] Zhang J,Zhang Z,Li Q,Qu Y,Jiang S. Selenium encapsulated into interconnected polymer-derived porous carbon nanofiber webs as cathode materials for lithium-selenium batteries[J]. J. Electrochem. Soc. ,2014,161(14):A2093-A2098. [30] Peng X,Wang L,Zhang X,Gao B,Fu J,Xiao S,Huo K,Chu P. Reduced graphene oxide encapsulated selenium nanoparticles for high-power lithium-selenium battery cathode[J]. J. Power Sources ,2015,288:214-220. [31] Li J,Zhao X,Zhang Z,Lai Y. Facile synthesis of hollow carbonized polyaniline spheres to encapsulate selenium for advanced rechargeable lithium-selenium batteries[J]. J. Alloys Compd. ,2015,619:794-799. [32] Liu L,Wei Y,Zhang C,Zhang C,Li X,Wang J,Ling L,Qiao W,Long D. Enhanced electrochemical performances of mesoporous carbon microsphere/selenium composites by controlling the pore structure and nitrogen doping[J]. Electrochim. Acta ,2015,153:140-148. [33] Lai Y,Yang F,Zhang Z,Jiang S,Li J. Encapsulation of selenium in porous hollow carbon spheres for advanced lithium-selenium batteries[J]. RSC Adv. ,2014,4(74):39312-39315. [34] Li Z,Yuan L,Yi Z,Liu Y,Huang Y. Confined selenium within porous carbon nanospheres as cathode for advanced Li-Se batteries[J]. Nano Energy ,2014,9:229-236. [35] Qu Y,Zhang Z,Jiang S,Wang X,Lai Y,Liu Y,Li J. Confining selenium in nitrogen-containing hierarchical porous carbon for high-rate rechargeable lithium-selenium batteries[J]. J. Mater. Chem. A ,2014,2(31):12255-12261. [36] Liu Y,Si L,Zhou X,Liu X,Xu Y,Bao J,Dai Z. Selenium-confined microporous carbon cathode for ultrastable lithium-selenium batteries[J]. J. Chem. Mater. A ,2014,2(42):17735-17739. [37] Jiang Y,Ma X,Feng J,Xiong S. Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium-selenium batteries[J]. J. Mater. Chem. A ,2015,3(8):4539-4546. [38] Wang H,Li S,Chen Z,Liu H,Guo Z. A novel type of one-dimensional organic selenium containing fiber with superior performance for lithium-selenium and sodium-selenium batteries[J]. RSC Adv. ,2014,4(106):61673-61678. [39] Qu Y,Zhang Z,Lai Y,Liu Y,Li J. A bimodal porous carbon with high surface area supported selenium cathode for advanced Li-Se batteries[J]. Solid State Ionics ,2015,274:71-76. [40] Ye H,Yin Y X,Zhang S F,Guo Y G. Advanced Se-C nanocomposites:A bifunctional electrode material for both Li-Se and Li-ion batteries[J]. J. Mater. Chem. A ,2014,2(33):13293-13298. [41] Zhang Z,Yang X,Wang X,Li Q,Zhang Z. TiO 2 -Se composites as cathode material for rechargeable lithium-selenium batteries[J]. Solid State Ionics ,2014,260:101-106. [42] Han K,Liu Z,Ye H,Dai F. Flexible self-standing graphene-Se@CNT composite film as a binder-free cathode for rechargeable Li-Se batteries[J]. J. Power Sources ,2014,263:85-89. [43] Han K,Liu Z,Shen J,Lin Y,Dai F,Ye H. A free-standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture[J]. Adv. Funct. Mater. ,2015,25(3):455-463. [44] Zhang J,Xu Y,Fan L,Zhu Y,Liang J,Qian Y. Graphene- encapsulated selenium/polyaniline core-shell nanowires with enhanced electrochemical performance for Li-Se batteries[J]. Nano Energy ,2015,13:592-600. [45] Lee J T,Kim H,Oschatz M,Lee D C,Wu F,Lin H T,Zdyrko B,Cho W,Kaskel S,Yushin G. Micro-and mesoporous carbide-derived carbon-selenium cathodes for high-performance lithium selenium batteries[J]. Adv. Energy Mater. ,2015,5(1):doi: 10.1002/aenm. 201400981. [46] Zhang Z,Zhang Z,Zhang K,Yang X,Li Q. Improvement of electrochemical performance of rechargeable lithium-selenium batteries by inserting a free-standing carbon interlayer[J]. RSC Adv. ,2014,4(30):15489-15492. [47] Fang R,Zhou G,Pei S,Li F,Cheng H M. Localized polyselenides with a graphene-coated polymer separator for high rate and ultralong life lithium-selenium batteries[J]. Chem. Commun. ,2015,51(17):3667-3670. |
[1] | 石爽, 吕娜伟, 马敬轩, 尹康涌, 孙磊, 张宁, 金阳. 不同类型气体探测对磷酸铁锂电池储能舱过充安全预警有效性对比研究[J]. 储能科学与技术, 2022, (): 1-11. |
[2] | 郭凯强, 车海英, 张浩然, 廖建平, 周煌, 张云龙, 陈航达, 申展, 刘海梅, 马紫峰. B2O3 包覆NaNi1/3Fe1/3Mn1/3O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, (): 1-10. |
[3] | 刘韬, 邱大平, 夏建年, 邓加红, 陈志宇, 魏谨莹, 李敏, 杨儒. 离子电池正极材料的结构与性能[J]. 储能科学与技术, 2019, 8(S1): 1-17. |
[4] | 金远, 韩甜, 韩鑫, 康鑫. 锂离子电池热管理综述[J]. 储能科学与技术, 2019, 8(S1): 23-31. |
[5] | 徐敏, 刘中财, 严晓, 黄碧雄, 王影, 王炯耿. 容量增量内阻一致性在线检测方法[J]. 储能科学与技术, 2019, 8(6): 1197-1203. |
[6] | 王贺武, 张亚军, 李成, 李伟峰, 欧阳明高. 锂离子动力电池中等荷电状态下热失控产物喷发过程[J]. 储能科学与技术, 2019, 8(6): 1076-1081. |
[7] | 丛龙达, 邢雅兰, 靳宝贻, 吴昊, 赵光金, 张世超. 基于微乳液法的多孔棒状结构MnFe2O4制备及电化学性能[J]. 储能科学与技术, 2019, 8(6): 1132-1136. |
[8] | 郭鑫, 赵也非, 郑俊生, 秦楠, 戴宁宁. 基于锂离子电容器的48 V启停电源系统设计[J]. 储能科学与技术, 2019, 8(6): 1159-1164. |
[9] | 邓哲, 黄震宇, 刘磊, 黄云辉, 沈越. 超声技术在锂离子电池表征中的应用[J]. 储能科学与技术, 2019, 8(6): 1033-1039. |
[10] | 沈进冉, 郭翠静, 陈赫, 周淑琴, 徐斌, 官亦标. 高性能氮掺杂石墨烯的制备及其储锂性能[J]. 储能科学与技术, 2019, 8(6): 1137-1144. |
[11] | 裴冯来, 侯明涛, 贺继龙, 吴波, 陈凤祥. 质子交换膜燃料电池空压机建模[J]. 储能科学与技术, 2019, 8(6): 1247-1252. |
[12] | 解洪嘉, 孙杰, 李吉刚, 周添, 卫寿平, 伊志豪. 锂离子电池电热触发热失控泄漏毒物研究[J]. 储能科学与技术, 2019, 8(6): 1082-1088. |
[13] | 陈德海, 马原, 潘韦驰. 改进PSO-RBF模型的分阶查表法荷电状态估计[J]. 储能科学与技术, 2019, 8(6): 1190-1196. |
[14] | 季洪祥, 起文斌, 田丰, 田孟羽, 金周, 闫勇, 张华, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2019.08.01-2019.09.30)[J]. 储能科学与技术, 2019, 8(6): 1271-1284. |
[15] | 梁菊梅, 郭雨萌, 王明暄, 希利德格, 张丽娟. 钠离子电池锡基金属氧化物研究进展[J]. 储能科学与技术, 2019, 8(5): 813-820. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||