[1] Amine K,Tukamoto K,Yasuda H, et al . A new three volt spinel Li 1+ x Ni 0.5 Mn 1.5 O 4 for secondary lithium batteries[J]. Journal of the Electrochemical Society ,1996,143:1607-1613. [2] Zhong Q,Bonakdarpour A,Zhang M, et al . Synthesis and electrochemistry of LiNi x Mn 2- x O 4 [J]. Journal of the Electrochemical Society ,1997,144:205-213. [3] Santhanam R,Rambabu B. Research progress in high voltage spinel LiNi 0.5 Mn 1.5 O 4 material[J]. Journal of Power Sources ,2010,195:5442-5451. [4] Lin C Y,Duh J G,Hsu C H, et al . LiNi 0.5 Mn 1.5 O 4 cathode material by low-temperature solid-state method with excellent cycle ability in lithium ion battery[J]. Materials Letters ,2010,64:2328-2330. [5] Li Hong(李泓). Fundamental scientific aspects of lithium ion batteries (XV) ——Summary and outlook[J]. Energy Storage Science and Technology (储能科学与技术),2015,4(3):306-318. [6] Kanamura K,Hoshikawa W. Electrochemical reaction of 5 V cathode LiNi 0.4 Mn 1.6 O 4 [J]. Solid State Ionics ,2006,177:113 -119. [7] Alca´ntara R,Jaraba M,Lavela P, et al . Optimizing preparation conditions for 5 V electrode performance and structural changes in Li 1- x Ni 0.5 Mn 1.5 O 4 spinel[J]. Electrochimica Acta ,2002,47 :1829-1835. [8] Jiao C,Wang L,Zuo Y, et al . Solid-state synthesis of spherical hierarchical LiNi 0.5 Mn 1.5 O 4 through an improved calcination method and its cyclic performance for 5V lithium ion batteries[J]. Solid State Ionics ,2015,277:50-56. [9] Idemoto Y,Narai H,Koura N. Crystal structure and cathode performance dependence on oxygen content of LiNi 0.5 Mn 1.5 O 4 as a cathode material for secondary lithium batteries[J]. Journal of Power Sources ,2003,119-121:125-129. [10] Huang X,Zhang Q,Gan J, et al . Hydrothermal synthesis of a nanosized LiNi 0.5 Mn 1.5 O 4 cathode material for high power lithium- ion batteries[J]. Journal of the Electrochemical Society ,2011,158:A139-A145. [11] Gu Y J,Li Y,Fu Y, et al . LiNi 0.5 Mn 1.5 O 4 synthesized through ammonia-mediated carbonate precipitation[J]. Electrochimica Acta ,2015,176:1029-1035. [12] Yi T F,Hu X G. Preparation and characterization of sub-micro LiNi 0.5- x Mn 1.5+ x O 4 for 5V cathode materials synthesized by an ultrasonic-assisted co-precipitation method[J]. Journal of Power Sources ,2007,167:185-191. [13] Chang Z,Dai D,Tang H, et al . Effects of precursor treatment with reductant or oxidant on the structure and electrochemical properties of LiNi 0.5 Mn 1.5 O 4 [J]. Electrochimica Acta ,2010,55:5506-5510. [14] Yi T F,Fang Z K,Xie Y, et al . Synthesis of LiNi 0.5 Mn 1.5 O 4 cathode with excellent fast charge-discharge performance for lithium-ion battery[J]. Electrochimica Acta ,2015,147:250-256. [15] Zhang X,Zheng H,Battaglia V, et al . Flame synthesis of 5 V spinel LiNi 0.5 Mn 1.5 O 4 cathode-materials for lithium-ion rechargeable- batteries[J]. Proceedings of the Combustion Institute ,2011,33:1867-1874. [16] Amarilla J M,Rojas R M,Rojo J M. Understanding the sucrose-assisted combustion method:Effects of the atmosphere and fuel amount on the synthesis and electrochemical performances of LiNi 0.5 Mn 1.5 O 4 spinel[J]. Journal of Power Sources ,2011,196:591-595. [17] Yamada M,Dongying B,Kodera T. Mass production of cathode materials for lithium ion battery by flame type spray plrolysis[J]. Journal of Ceramic Society of Japan ,2007,117:1011-1020. [18] Park S H,Sun Y K. Synthesis and electrochemical properties of 5 V spinel LiNi 0.5 Mn 1.5 O 4 cathode materials prepared by ultrasonic spray pyrolysis method[J]. Electrochimica Acta ,2004,50:431-434. [19] Sivakumar P,Nayak P K,Markovsky B, et al . Sonochemical synthesis of LiNi 0.5 Mn 1.5 O 4 and its electrochemical performance as a cathode material for 5 V Li-ion batteries[J]. Ultrasonics Sonochemistry ,2015,26:332-339. [20] Kim J H,Myung S T,Yoon C S, et al . Comparative study of LiNi 0.5 Mn 1.5 O 4-ä and LiNi 0.5 Mn 1.5 O 4 cathodes having two crystallographic structures:Fd3hm and P4332[J]. Chemistry of Materials ,2004,16:906-914. [21] Kim J H,Myung S T,Sun Y K. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery[J]. Electrochimica Acta,2004,49:219-227. [22] Risthaus T,Wang J,Friesen A,et al. Synthesis of spinel LiNi0.5Mn1.5O4 with secondary plate morphology as cathode material for lithium ion batteries[J]. Journal of Power Sources,2015,293:137-142. [23] Wang H,Shi Z,Li J, et al . Direct carbon coating at high temperature on LiNi 0.5 Mn 1.5 O 4 cathode:Unexpected influence on crystal structure and electrochemical performances[J]. Journal of Power Sources ,2015,288:206-213. [24] Pan J,Deng J,Yao Q, et al . Novel LiNi 0.5 Mn 1.5 O 4 porous microellipsoids as high-performance cathode materials for lithium ion batteries[J]. Journal of Power Sources ,2015,288:353-358. [25] Tang X,Savut J S,Qian Y, et al . Graphene wrapped ordered LiNi 0.5 Mn 1.5 O 4 nanorods as promising cathode material for lithium- ion batteries[J]. Scientific Reports ,2015,doi:10.1038/srep11958. [26] Shimoda K,Murakami M,Komatsu H, et al . Delithiation/lithiation behavior of LiNi 0.5 Mn 1.5 O 4 studied by in situ and ex situ 6,7 Li NMR spectroscopy[J]. Journal of Physical Chemistry C ,2015,19(24):13472-13480. [27] Ohzuku T,Kitagawa M,Hirai T. Electrochemistry of manganese dioxide in lithium nonaqueous cell[J]. Journal of the Electrochemical Society ,1990,137:769-775. [28] Ma Z F,Yang X Q,Sun X, et al . Charge-discharge behavior and phase transition of mixed LiMn 2 O 4 and LiNi 0.8 Co 0.2 O 2 cathode materials for lithium ion batteries[J]. Journal of New Materials for Electrochemical Systems ,2001,4(2):121. [29] Wen W,Kumarasamy B,Mukerjee S, et al . Origin of 5 V electrochemical activity observed in non-redox reactive divalent cation doped LiM 0.5- x Mn 1.5+ x O 4 (0 x in situ XRD and xanes spectroscopy studies[J]. Journal of the Electrochemical Society ,2005,152:A1902-A1911. [30] Liu G Q,Wen L,Liu G Y, et al . Rate capability of spinel LiCr 0.1 Ni 0.4 Mn 1.5 O 4 [J]. Journal of Alloys and Compounds ,2010,501:233-235. [31] Kundurac M,Amatucci G G. Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn 2- x Ni x O 4 (0.50≥ x ≥0.36) spinels[J]. Journal of Power Sources ,2007,165:359-367. [32] Yang X Q,Sun X,Lee S J, et al . In situ synchrotron X-ray diffraction studies of the phase transitions in Li x Mn 2 O 4 cathode materials[J]. Electrochemical and Solid-State Letters ,1999,2 :157-160. [33] Yang X Q,Sun X,McBreen J. Structural changes and thermal stability: In situ X-ray diffraction studies of a new cathode material LiMg 0.125 Ti 0.125 Ni 0.75 O 2 [J]. Electrochemistry Communications ,1999,2:733-737. [34] Mukerjee S,Yang X Q,Sun X, et al . In situ synchrotron X-ray studies on copper-nickel 5 V Mn oxide spinel cathodes for Li-ion batteries[J]. Electrochimica Acta ,2004,49:3373-3382. [35] Xia Y,Sakai T,Fujieda T, et al . Correlating capacity fading and structural changes in Li 1+ x Mn 2- y O 4- δ spinel cathode materials:A systematic study on the effects of Li/Mn ratio and oxygen deficency[J]. Journal of the Electrochemical Society ,2001,148:723-728. |