[1] Wang Zhiqiang(王志强),Cao Mingli(曹明礼),Gong Anhua(龚安华),Su Qingqing(苏青青). Variety application and fature of the phased-change materials to store the heat[J]. Anhui Chemical Industry (安徽化工),2005(2):8-10. [2] Zhang Renyuan(张仁元). 相变材料与相变储能技术[M]. Beijing:Science Press,2009:110. [3] Fang Yutang(方玉堂),Kang Huiying(康慧英),Zhang Zhengguo(张正国), et al . Review of polyethylene glycol for energy storage[J]. Chemical Industry and Engineering Progress (化工进展),2007,26(8):1063-1067. [4] Sarier N,Onder E. Organic phase change materials and their textile applications:An overview[J]. Thermochimica Acta ,2012,540(1):7-60. [5] Wu Kezhong(武克忠),Wang Xindong(王新东),Liu Xiaodi(刘晓地). Phase diagram of binary system PG-TAM[J]. Journal of Chemical Engineering of Chinese Universities (高等化学工程学报),2005,19(4):541-545. [6] Fan Yaofeng(樊耀峰),Zhang Xingxiang(张兴祥). Progress in studies of solid-solid phase change materials[J]. Materials Review (材料导报),2003,17(7):50-54. [7] Wang Xianglei,Guo Quangui,Zhong Yajuan,Wei Xinghai,Liu Lang. Heat transfer enhancement of neopentyl glycol using compressed expanded natural graphite for thermal energy storage[J]. Renewable Energy ,2013,51:241-246. [8] Sharma A,Tyagi V V,Chen C R, et al . Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews ,2009,13(2):318-345. [9] Shi Jianan,Ger Mingder,Liu Yihming, et al . Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon ,2013,51:365-372. [10] Xiao X,Zhang P,Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material[J]. Applied Energy ,2013,112:1357-1366. [11] Wu Shuying(吴淑英),Wang Nan(汪南),Zhu Dongsheng(朱冬生). Thermal conductivity of nano-Cu/paraffin composite phase change materials[J]. New Chemical Materials (化工新型材料),2012,40(5):104-106. [12] Li M,Kao H,Wu Z, et al . Study on preparation and thermal property of binaryfatty acid and the binary fatty acids/diatomite composite phase changematerials[J]. Applied Energy ,2011,88(5):1606-1612. [13] Baran G,Sari A. Phase change and heat transfer characteristics of a eutecticmixture of palmitic and stearic acids as PCM in a latent heat storage system[J]. Energy Conversion and Management ,2003,44(20):3227-3246. [14] Cai Yibing,Gao Chuntao,Zhang Ting,Zhang Zhen,Wei Qufu,Du Jinmei,Hu Yuan,Song Lei. Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats[J]. Renewable Energy ,2013,57:163-170. [15] Fauzi Hadi,Metselaar H S C,Mahlia T M I,Silakhori Mahyar,Nur Hadi. Phase change material:Optimizing the thermal properties and thermal conductivity of myristic acid/palmitic acid eutectic mixture with acid-based surfactants[J]. Applied Thermal Engineering ,2013,60:261-265. [16] Ahmet Alper Aydin. Fatty acid ester-based commercial products as potential new phase change materials (PCMs) for thermal energy storage[J]. Solar Energy Materials and Solar Cells ,2013,108:98-104. [17] Huang Jin,Wang Tingyu,Zhu Panpan,Xiao Junbin. Preparation,characterization,and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials[J]. Thermochimica Acta ,2013,557:1-6. [18] Sarı Ahmet,Biçer Alper. Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form-stable PCMs[J]. Solar Energy Materials and Solar Cells ,2012,101:114-122. [19] Martin C,Bauer T,Müller-Steinhagen H. An experimental study of a non-eutectic mixture of KNO 3 and NaNO 3 with a melting range for thermal energy storage[J]. Applied Thermal Engineering ,2013,56(1-2):159-166. [20] Peng Qiang,Yang Xiaoxi,Ding Jing,Wei Xiaolan,Yang Jianping. Design of new molten salt thermal energy storage material for solar thermal power plant[J]. Applied Energy ,2013,112:682-689. [21] Olivares R I,Edwards W. LiNO 3 -NaNO 3 -KNO 3 salt for thermal energy storage:Thermal stability evaluation in different atmospheres[J]. Thermochimica Acta ,2013,560:34-42. [22] Roget F,Favotto C,Rogez J. Study of the KNO 3 -LiNO 3 and KNO 3 -NaNO 3 -LiNO 3 eutectics as phase change materials for thermal storage in a low-temperature solar power plant[J]. Solar Energy ,2013,95:155-169. [23] Wang T,Mantha D,Reddy R G. Thermal stability of the eutectic composition in LiNO 3 -NaNO 3 -KNO 3 ternary system used for thermal energy storage[J]. Solar Energy Materials and Solar Cells ,2012,100:162-168. [24] Dudda B,Shin D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences ,2013,69:37-42. [25] Tiznobaik H,Shin D. Enhanced specific heat capacity of high- temperature molten salt-based nanofluids[J]. International Journal of Heat and Mass Transfe r,2013,57(2):542-548. [26] Chieruzzi M,Cerritelli G F,Miliozzi A,Kenny J M. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage[J]. Nanoscale Research Letters ,2013,8(1):448. [27] Reddy R G,Wang T,Mantha D. Thermodynamic properties of potassium nitrate-magnesium nitrate compound [2KNO 3 ·Mg(NO 3 ) 2 ][J]. Thermochimica Acta ,2012,531:6-11. [28] Wang T,Mantha D,Reddy R G. Thermodynamic properties of LiNO 3 -NaNO 3 -KNO 3 -2KNO 3 ·Mg(NO 3 ) 2 system[J]. Thermochimica Acta ,2013,551:92-98. [29] Bradshaw R W. Viscosity of multi-component molten nitrate salts-liquidus to 200 C[R]. Sandia Report,No. SAND2010-1129,2010. [30] Raade J W,Padowitz D. Development of molten salt heat transfer fluid with low melting point and high thermal stability[J]. Journal of Solar Energy Engineering ,2011,133(3):31013. [31] Birchenall C E,Riechman A F. Heat storage in eutectic alloys[J]. Metallurgical Transactions A ,1980,11(A 8):1415-1420. [32] Fakas D,Birchenall C E. New eutectic alloys and their heats of transformation[J]. Metallurgical Transactions A ,1985,16(A3):323-328. [33] Mobley C E. Hypereutectic heat storage shot[D]. The United States:The Ohio State University,1985. [34] Gasanaliev A M,Gamataeva B Y. Heat-accumulating properties of melts[J]. Russian Chemical Reviews ,2000,69(2):179-186. [35] Maruoka N,Sato K,Yagi J. Development of PCM for recovering high temperature waste heat and utilization for producing hydrogen by reforming reaction of methane[J]. ISIJ International ,2002,42(2):215-219 [36] Maruoka N,Akiyama T. Thermal stress analysis of PCM encapsulation for heat recovery of high temperature waste heat[J]. Journal of Chemical Engineering of Japan ,2003,36(7):794-798. [37] Hoshi A,Mills D R,Bittar A. Screening of high melting point phase change materials (PCM) in solar thermal concentraing technology based on CLFR[J]. Solar Energy ,2005,79(3):332-339. [38] Huang Zhiguang(黄志光),Wu Guangzhong(吴广忠),Dai Xuqi(戴绪绮). High-temperature solar energy storage and utilization[J]. Renewable Energy Resources (可再生能源),1992(4):13-15. [39] Huang Zhiguang(黄志光),Wu Guangzhong(吴广忠),Dai Xuqi(戴绪绮). Thermal storage of phase change metal for concentrating solar cooker[J]. Acta Energiae Solaris Sinica (太阳能学报),1992,13(3):271-275. [40] Huang Zhiguang(黄志光),Mei Shaohua(梅绍华),Wu Guangzhong(吴广忠). Review on metal phase change thermal energy storage technology[J]. New Energy (新能源),1996,18(8):1-6. [41] Chen Zhengrong(陈正荣),Xing Dengqing(邢登清),Wang Shoubiao(王守彪). High temperature storage of solar metal phase transition[J]. Tibet’s Science and Technology (西藏科技),1995(4):10-12. [42] Zou Xiang(邹向),Tong Zhaofeng(仝兆丰),Zhao Xiwei(赵锡伟). Study of alar phase-change material[J]. New Energy (新能源),1996,18(8):l-3. [43] Zhang Renyuan(张仁元),Sun Jianqiang(孙建强),Ke Xiufang(柯秀芳), et al . Heat storage properties of Al-Si alloy[J]. Chinese Journal of Materials Research (材料研究学报),2006,20(2):156-160. [44] Zhang Yinping(张寅平),Jiang Yi(江亿),Di Hongfa(狄洪发). 高温相变电取暖器:中国,99214838.3[P]. 1999. [45] Sun Jianqiang(孙建强),Zhang Renyuan(张仁元),Shen Xuezhong(沈学忠). Thermal analytical investigations of Al-34% Mg-6% Zn and Al-28%Mg-14%Zn alloys[J]. Journal of Guangdong University of Technology (广东工业大学学报),2006,23(8):8-15. [46] Cheng Xiaomin(程晓敏),Guan Jisheng(官计生),Hu Sheng(胡胜), et al . Design of high temperature thermal energy storage aluminum alloy and system[J]. Chinese Materials Science Technology & Equipment (中国材料科技与设备),2008(2):91-93. [47] Cheng Xiaomin(程晓敏),Dong Jing(董静),Wu Xingwen(吴兴文), et al . Thermal storage properties of high-temperature phase transformation on Al-Si-Cu-Mg-Zn alloys[J]. Heat Treatment of Metals (金属热处理),2010,35(3):13-16. [48] Zhang Guocai(张国才),Xu Zhe(徐哲),Chen Yunfa(陈运法),Li Jianqiang(李建强). Progress in metal-based phase change materials for thermal energy storage applications[J]. Energy Storage Science and Technology (储能科学与技术),2012,1(1):75-81. [49] Nicholas R,Jankowski F,McCluskey Patrick. A review of phase change materials for vehicle component thermal buffering[J]. Applied Energy ,2014,113:1525-1561. [50] Li Yuanyuan(李元元),Cheng Xiaomin(程晓敏). Review on the low melting point alloys for thermal energy storage and heat transfer applications[J]. Energy Storage Science and Technology (储能科学与技术),2013,2(3):189-198. [51] Hale D V,Hoover M J,O’Neill M J. Phase change materials handbook:Technical report[R]. Huntsville:National Aeronautics and Space Administration,1971-09. [52] Kenisarin M M. High-temperature phase change materials for thermal energy storage[J]. Renew. Sustain. Energy Rev. ,2010,14(3):955-970. [53] Ge H,Li H,Mei S,Liu J. Low melting point liquid metal as a new class of phase change material:An emerging frontier in energy area[J]. Renew. Sustain. Energy Rev. ,2013,21:331-346. [54] Ma K,Liu J. Liquid metal cooling in thermal management of computer chips[J]. Front Energy Power Eng. Chin. ,2007,1(4):384-402. [55] Indalloy Specialty Alloys[EB/OL]. 2012-01-28. http://www.indium.com/ products/alloysolderchart.php. [56] Fukuoka Y,Ishizuka M. Thermal analysis of a new high density package cooling technology using low melting point alloys[J]. Japn. J. Appl. Phys .,1991,30:1313-1319. [57] Chen S W,Wang C H,Lin S K, et al . Thermal and mechanical properties of Sn-Pb solder alloys[J]. J. Mater. Sci .: Mater. Electron .,2007,18:19-37. [58] Voronina T B,Gudkov V I,Shimanskii O V. Energy storage and ways of increasing the efficiency of operation of power plants and economy of energy[R]. Moscow:Khimiya,1986. [59] Zhang M,Tong X M,Zhang H. Preparation and characterization of poly (MMA-co-AA)/paraffin microencapsulated phase change material for thermal energy storage[J]. Energy Sources Part A : Recovery, Utilization, and Environmental Effects ,2012,34(5):396-403. [60] Zhang G H,Bon S A F,Zhao C Y. Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage[J]. Solar Energy ,2012,86(5):1149-1154. [61] Sarı A,Alkan C,Karaipekli A. Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage[J]. Applied Energy ,2010,87(5):1529-1534. [62] Sarı A,Alkan C,Karaipekli A, et al . Microencapsulated n -octacosane as phase change material for thermal energy storage[J]. Solar Energy ,2009,83(10):1757-1763. [63] Pan Lin,Tao Quanhong,Zhang Shudong, et al . Preparation,characterization, and thermal properties of microencapsulated phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells ,2009,93(1):143-147. [64] Sarı Ahmet,Alkan Cemil,Karaipekli Ali, et al . Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials[J]. Energy Conversion and Management ,2008,49(2):373-380. [65] Li M,Wu Z,Tan J. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol-gel method[J]. Applied Energy ,2012,92:456-461. [66] Zhang H,Wang X,Wu D. Silica encapsulation of n -octadecane via sol-gel process:A novel microencapsulated phase-change material with enhanced thermal conductivity and performance[J]. J. Colloid Interface Sci. ,2010,343(1):246-255. [67] Yavari F,Fard H R,Pashayi K, et al . Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives[J]. The Journal of Physical Chemistry C ,2011,115(17):8753-8758. [68] Liu Z P,Zou R Q,Lin Z Q, et al . Tailoring carbon nanotube density for modulating electro-to-heat conversion in phase change composites[J]. Nano Lett. ,2013,13(9):4028-4035. [69] Zhao C Y,Zhang G H. Review on microencapsulated phase change materials (MEPCMs):Fabrication, characterization and applications[J]. Renewable and Sustainable Energy Reviews ,2011,15(8):3813-3832. [70] Zhang J,Wang S S,Zhang S D, et al . In situ synthesis and phase change properties of Na 2 SO 4 ·10H 2 O@SiO 2 solid nanobowls toward smart heat storage[J]. Journal of Physical Chemistry C ,2011,115(41):20061-20066. [71] Phadungphatthanakoon S,Poompradub S,Wanichwecharungruang S P. Increasing the thermal storage capacity of a phase change material by encapsulation:Preparation and application in natural rubber[J]. ACS Appl. Mater. Interfaces ,2011,3(9):3691-3696. [72] Montenegro R,Landfester K. Metastable and stable morphologies during crystallization of alkanes in miniemulsion droplets[J]. Langmuir ,2003,19(15):5996-6003. [73] Gao X,Fu D S,Su Y L, et al . Phase transition behavior of a series of even n-alkane C( n )/C( n +2) mixtures confined in microcapsules:from total miscibility to phase separation determined by confinement geometry and repulsion energy[J] . J. Phys. Chem. B ,2013,117(44):13914-13921. [74] Chen L,Zou R Q,Xia W, et al . Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges[J]. ACS Nano ,2012,6(12):10884-10892. [75] Li C,Fu L J,Ouyang J, et al . Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage[J]. Sci. Rep. ,2013,3:1908. |