[1] Cardenas R,Pena R,Alepuz S,Asher G. Overview of control system for the operation of DFIGs in wind energy application[J]. IEEE Trans. Ind. Electron. ,2013(7):2776-2798. [2] Tohidi S,Oraee H,Zolghadri M R,Shao S,Tavner P. Analysis and enhancement of low-voltage-ride-through capability of brushless doubly fed induction generator[J]. IEEE Trans. Ind. Electron. ,2013(3):1146-1155. [3] Vidal J,Abad G,Arza J,Aurtenechea S. Single-phase DC crowbar topologies for low voltage ride through fulfillment of high-power doubly fed induction generator-based wind turbines[J]. IEEE Trans. Energy Convers. ,2013(3):768-781. [4] Pannell G,Zahawi B,Atkinson D J,Missailidis P. Evaluation of the performance of a DC-link brake chopper as a DFIG low-voltage fault-ride-through device[J]. IEEE Trans. Energy Convers. ,2013(3):535-542. [5] Abbey C,Joos G. Supercapacitor energy storage for wind energy applications[J]. IEEE Trans. Ind. Appl. ,2007(3):763-776. [6] Guo W,Xiao L,Dai S. Enhancing low-voltage ride-through capability and smoothing output power of DFIG with a superconducting fault-current limiter-magnetic energy storage system[J]. IEEE Trans. Energy Convers. ,2012(2):277-295. [7] Huang P,Moursi M S E,Xiao W,Kirtley J L. Novel fault ride-through configuration and transient management scheme for doubly fed induction generator[J]. IEEE Trans. Energy Convers. ,2013(1):86-94. [8] Ramirez D,Martinez S,Platero C A,Blazquez F,De Castro R M. Low-voltage ride-through capability for wind generators based on dynamic voltage restorers[J]. IEEE Trans. Energy Convers. ,2011(1):195-203. [9] Yang J,Flectcher J E,O'Reilly J. A series dynamic resistor based converter protection scheme for doubly fed induction generator during various fault condition[J]. IEEE Trans. Energy Convers. ,2010(2):422-432. [10] Yan X,Venkataramanan G,Wang Y,Dong Q,Zhang B. Grid-fault tolerant operation of DFIG wind turbine generator using a passive resistance network[J]. IEEE Transaction on Power Electron. ,2011,10:2896-2905. [11] Mohammadi J,Afsharnia S,Vaez-Zadeh S. Efficient fault-ride- through control strategy of DFIG-based wind turbines during the grid fault[J]. Energy Conversion and Management ,2014(78):88-95. [12] Da Costa J P,Pinheiro H,Degner T,Arnold G. Robust controller for DFIGs of grid-connected wind turbines[J]. IEEE Trans. Ind. Electron. ,2011(9):4023-4038. [13] Xiao S,Yang G,Zhou H,Geng H. An LVRT control strategy based on flux linkage tracking for DFIG-based WECS[J]. IEEE Trans. Ind. Electron. ,2013(7):2820-2832. [14] Geng H,Liu C,Yang G. LVRT capability of DFIG-based WECS under asymmetrical grid fault condition[J]. IEEE Trans. Ind. Electron. ,2013,60(6):2495-2509. [15] Xiao S,Yang G,Zhou H,Geng H. Analysis of the control limit for rotor-side converter of doubly fed induction generator-based wind energy conversion system under various voltage dips[J]. IET Renew. Power Gen. ,2013(1):71-81. [16] Long T,Shao S,Malliband P,Abdi E,McMahon R A. Crowbarless fault ride-though of the brushless doubly fed induction generator in a wind turbine under symmetrical voltage dips[J]. IEEE Trans. Ind. Electron. ,2013,60(7):2833. [17] Yang L,Xu Z,Ostergaard J,Dong Z Y,Wong K P. Advanced control strategy of DFIG wind turbines for power system fault ride through[J]. IEEE Trans. Power Syst. ,2012(2):713-722. [18] Hossain M J,Saha T K,Mithulannanthan N,Pota H R. Control strategies for augmenting LVRT capability of DFIGs in interconnected power system[J]. IEEE Trans. Ind. Electron. ,2013,60(6):2510. [19] Xie D,Xu Z,Yang L,Ostergaard J,Xue Y,Wong K P. A comprehensive LVRT control strategies for DFIG wind turbines with enhanced reactive power support[J]. IEEE Trans. Power Syst. ,2013 (3):3302-3310. [20] Liang J,Howard D F,Restrepo J A,Harley R G. Feedforward transient compensation control for DFIG wind turbines during both balanced and unbalanced grid disturbances[J]. IEEE Trans. Ind. Appl. ,2013(3):1452-1462. [21] Bu S Q,Du W,Wang H F,Gao S. Power angle control of grid-connected doubly fed induction generator wind turbines for fault ride-through[J]. IET Renew. Power Gen. ,2013(1):18-27. [22] Jiang Q,Gong Y,Wang H. A battery energy storage system dual-layer control strategy for mitigating wind farm fluctuations[J]. IEEE Trans. Power Syst. ,2013(3):3263-3272. [23] Cstillo Anya,Gayme D F. Grid-scale energy storage applications in renewable energy integration:A survey[J]. Energy Conversion and Management ,2014(87):885-894. [24] Zhao P,Wang J,Dai Y. Capacity allocation of a hybrid energy storage system peak shaving at high wind power penetration level[J]. Renewable Energy ,2015,75:541-549. [25] Xu G,Xu L,Morrow J. Power oscillation damping using wind turbine with energy storage systems[J]. IET Renewable Power Generation ,2013,7:449-457. [26] Diaz-Gonzalez F,Bianchi F D,Sumper A,Gomis-Bellmunt O. Control of a flywheel energy storage system for power smoothing in wind power plant[J]. IEEE Trans. Energy Convers. ,2013,60(1):204-214. [27] Islam F,Al-Durra A,Muyeen S M. Smoothing of wind farm output by prediction and supervisory-control-united- based FESS[J]. IEEE Trans. Sustainable Energy ,2013(4):925-933. |