储能科学与技术 ›› 2015, Vol. 4 ›› Issue (2): 169-175.doi: 10.3969/j.issn.2095-4239.2015.02.007

• 研究与进展 • 上一篇    下一篇

基于复合相变材料储热单元的储热特性

李传1, 葛志伟2, 金翼2, 李永亮1, 丁玉龙1   

  1. 1 英国伯明翰大学化学工程学院能源储备中心,伯明翰B15 2TT;
    2 中国科学院过程工程研究所,北京 100190
  • 收稿日期:2014-11-22 出版日期:2015-04-19 发布日期:2015-04-19
  • 通讯作者: 丁玉龙,教授,研究方向为储能系统、储能过程中多相流动与传热强化、无机中高温复合储能材料、深冷(液化)空气储能、压缩空气储能等,E-mail:y.ding@bham.ac.uk。
  • 作者简介:李传(1986—),男,博士研究生,研究方向为相变储热材料、储热系统的储热特性研究与优化设计,E-mail:lichuan0315@hotmail.com
  • 基金资助:
    国家科技支撑计划项目(2012BAA03B03),中国科学院重点部署项目(KGZD-EW-302-1),国家留学基金(CSC)及英国EPSRC (EP/L019469/1),(EP/1014211/1),(EP/K002252/1)项目

Heat transfer behaviour of thermal energy storage components using composite phase change materials

LI Chuan1, GE Zhiwei2, JIN Yi2, LI Yongliang1, DING Yulong1   

  1. 1 School of Chemical Engineering,University of Birmingham,Birmingham B15 2TT,UK;
    2 Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China
  • Received:2014-11-22 Online:2015-04-19 Published:2015-04-19

摘要: 对基于复合相变材料储热单元的储热性能进行了研究。建立了复合材料和储热单元体内部的二维传热模型,考察了复合材料物性和结构尺寸及传热流体操作条件(流体流速)对单元体储热性能的影响,对比了两种不同结构单元体的储热性能,并搭建实验平台进行了实验对比研究。对比结果表明,模型结果与实验结果趋于一致,验证了模型的准确性。复合材料物性和结构尺寸及传热流体操作条件对单元体储热性能有较大的影响。相比较单管储热单元体,同心管储热单元体有着更优的储热特性,在相同的操作条件下,同心管储热单元体的储热、放热时间较单管储热单元体分别减少10%和15%。

关键词: 传热, 复合相变材料, 储热单元, 数值模拟, 实验验证

Abstract: The work reported in this paper concerns the heat transfer behaviour of thermal energy storage components using composite phase change materials. Components with a single and a concentric configuration are designed and investigated. The composite materials consist of a molten salt based phase change material (PCM), a thermal conductivity enhancer material (TCEM) and a ceramic skeleton material (CSM). A mathematical model is established for the transient heat transfer in the composite materials and the components. The model is first compared with experimental data, showing a reasonably good agreement, and indicating the validity of the numerical model. Extensive modelling is then carried out to study the heat transfer behaviour under different conditions, particularly the influences of materials properties and geometrical design of the composite material module as well as heat transfer fluid velocity. The results show that an increase in the mass fraction of the TCEM, the thickness of the composite material module, or the velocity of the heat transfer fluid enhances the heat storage and release rate and improves the heat transfer performance of thermal energy storage components. The concentric tube configuration offers a better performance than the single tube configuration.

Key words: heat transfer, composite phase change materials, thermal energy storage component, numerical simulation, experimental validation

中图分类号: