储能科学与技术 ›› 2015, Vol. 4 ›› Issue (4): 365-373.doi: 10.3969/j.issn.2095-4239.2015.04.004
刘霞, 匡勇, 钱振, 郭成龙, 黄丛亮, 饶中浩
收稿日期:
2015-02-10
出版日期:
2015-08-19
发布日期:
2015-08-19
通讯作者:
饶中浩,博士,教授,主要研究方向为储能与传热,E-mail:raozhonghao @cumt.edu.cn。
作者简介:
刘霞(1991—),女,学士,主要研究方向为相变储能过程传热传质,E-mail:17116044@cumt.edu.cn
基金资助:
LIU Xia, KUANG Yong, QIAN Zhen, GUO Chenglong, HUANG Congliang, RAO Zhonghao
Received:
2015-02-10
Online:
2015-08-19
Published:
2015-08-19
摘要: 因环保和节能的需要,电动汽车必将成为未来汽车发展的重要方向。影响电池性能、寿命的热管理技术近年来发展迅速。电池热管理根据其传热介质分为空气冷却技术、液体冷却技术和相变材料冷却技术。本文根据近年来国内外对基于相变材料的动力电池热管理研究状况,综述了电池热管理相变材料的研究进展,重点总结了用于电池热管理的相变材料、PCM/高导热粒子、PCM/泡沫金属以及PCM用于电池热管理的形式。
中图分类号:
刘霞, 匡勇, 钱振, 郭成龙, 黄丛亮, 饶中浩. 电池热管理用相变储能材料的研究进展[J]. 储能科学与技术, 2015, 4(4): 365-373.
LIU Xia, KUANG Yong, QIAN Zhen, GUO Chenglong, HUANG Congliang, RAO Zhonghao. Review on phase change materials based battery thermal management technology[J]. Energy Storage Science and Technology, 2015, 4(4): 365-373.
[1] Fu Zhengyang(付正阳),Lin Chengtao(林成涛),Chen Quan shi (陈全世). Key technologies of thermal management system for EV battery packs[J]. Journal of Highway and Transportation Research and Development (公路交通科技),2005(3): 119-123. [2] Chen Quanshi(陈全世),Qi Zhanning(齐占宁). Technology challenge and prospect of fuel cell vehicle[J]. Automotive Engineering (汽车工程),2001(6):361-364. [3] Lin Chengtao(林成涛),Chen Quanshi( 陈全世). Power train configuration analysis of fuel cell bus[J]. Journal of Highway and Transportation Research and Development (公路交通科技), 2003(5):133-137. [4] Li D,Yang K,Chen S, et al . Thermal behavior of overcharged nickel/metal hydride batteries[J]. Journal of Power Sources , 2008,184(2):622-626. [5] Wu M S,Wang Y Y,Wan C C. Thermal behaviour of nickel metal hydride batteries during charge and discharge[J]. Journal of Power Sources ,1998,74:202-210. [6] Wicks F,Doane E. Temperature dependent performance of a lead acid electric vehicle battery[C]//Proceeding of the 28th Intersociety Energy Conversion Engineering Conference,Atlanta,1993. [7] Li W,Zhang R,Jiang N, et al . Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage[J]. Energy ,2013,57:607-614. [8] Mondal T,Bhowmick A K,Krishnamoorti R. Synthesis and characterization of bi-functionalized graphene and expanded graphite using n -butyl lithium and their use for efficient water soluble dye adsorption[J]. J. Mater. Chem. A ,2013,1(28):8144-8153. [9] Kizilel R,Sabbah R,Selman J R, et al . An alternative cooling system to enhance the safety of Li-ion battery packs[J]. Journal of Power Sources ,2009,194(2):1105-1112. [10] Gui Changqing(桂长清). Influence of temperature on LiFePO 4 Li-ion power battery[J]. Battery Bimonthly (电池),2011 (2):88-91. [11] Lei Zhiguo(雷治国),Zhang Chengning(张承宁). Research development on thermal management system of EVs battery package[J]. Chinese Journal of Power Sources (电源技术), 2011(12):1609-1612. [12] Yu Rongsheng(余荣升),Yan Hua(晏华),Wang Dawei (王大伟). Investigation of phase change materials in thermal management system of big capacitance Li-ion battery[C]// Proceedings of 2011 China Functional Materials Technology and Industry Forum,Chongqing,2011:967-969. [13] Wang Yanhong(王彦红),Zhang Chengliang(张成亮),Yu Huigen(俞会根), et al . The progress of phase change materials applied in battery thermal management[J]. Journal of Functional Materials (功能材料),2013,44(22):3213-3218. [14] Guerfi A,Vigny S S,Lagac M, et al . Nano-particle Li 4 Ti 5 O 12 spinel as electrode for electrochemical generators[J]. Journal of Power Sources ,2003,119-121:88-94. [15] Tang Zhiyuan(唐致远),Guan Daoan(管道安),Zhang Na (张娜), et al . Research on safety characteristics of high power lithium-ion batteries[J]. Chemical Industry and Engineering Progress (化工进展),2005(10):1098-1102. [16] Yang Kai(杨凯),Li Dahe(李大贺),Chen Shi(陈实), et al . Thermal model of batteries for electrical vehicles[J]. Transactions of Beijing Institute of Technology (北京理工大学学报), 2008(9):782-785. [17] Chen S C,Wan C C,Wang Y Y. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources ,2005,140(1):111- 124. [18] Belt J R,Ho C D,Miller T J, et al . The effect of temperature on capacity and power in cycled lithium ion batteries[J]. Journal of Power Sources ,2005,142(1-2):354-360. [19] Onda K,Ohshima T,Nakayama M, et al . Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J]. Journal of Power Sources ,2006,158(1):535-542. [20] Yang Yalian(杨亚联),Zhang Xin(张昕),Li Longjian (李 隆键), et al . The cooling structure of Ni-MH batteries in hybrid-electric vehicles[J]. Journal of Chongqing University (重庆 大学学报),2009(04):415-419. [21] Wu M S,Liu K H,Wang Y Y, et al . Heat dissipation design for lithium-ion batteries[J]. Journal of Power Sources ,2002, 109(1):160-166. [22] Al-Hallaj S,Selman J R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications[J]. Journal of Power Sources ,2002,110(2):341-348. [23] Pesaran A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of Power Sources ,2002,110 (2): 377- 382. [24] Khateeb S A,Farid M M,Selman J R, et al . Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter[J]. Journal of Power Sources ,2004,128(2):292-307. [25] Al-Hallaj S,Maleki H,Hong J S, et al . Thermal modeling and design considerations of lithium-ion batteries[J]. Journal of Power Sources ,1999,83(1-2):1-8. [26] Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles[J]. Journal of Power Sources ,2013,239:30-36. [27] Qi Xiaoxia(齐晓霞),Wang Wen(王文),Shao Liqing(邵力 清). Battery cooling issue and solutoins in HEVs[J]. Chinese Journal of Power Sources (电源技术),2005(3):178-181. [28] Yang Yalian(杨亚联),Zhang Xin(张昕),Li Longjian(李 隆键), et al . A study on the cooling system of Ni/H batteries for hybrid electric vehicle based on CFD analysis[J]. Automotive Engineering (汽车工程),2009(3):214-218. [29] Huo Yutao(霍宇涛),Rao Zhonghao(饶中浩),Liu Xinjian (刘新健), et al . Research development of battery thermal management system based on liquid medium[J]. Advances in New and Renewable Energy (新能源进展),2014(2):135-140. [30] Yuan Hao(袁昊),Wang Lifang(王丽芳),Wang Liye (王 立业). Battery thermal management system with liquid cooling and heating in electric vehicles[J]. Automotive Safety and Energy (汽车安全与节能学报),2012(4):371-380. [31] Zhang Jiangyun(张江云),Zhang Guoqing(张国庆),Zhang Lei(张磊), et al . Simulation and experiment on air-cooled thermal energy management of lithium-ion power batteries[J]. Automotive Safety and Energy (汽车安全与节能学报),2011 (2):181-184. [32] Zhu Xiaotong(朱晓彤),Yang Zhenglin(杨正林). Study in wind cooling system for RAV-4 EV packs[J]. Light Vehicles (轻型汽车技术),2006(11):13-16. [33] Mohammadian S K,Zhang Y. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. Journal of Power Sources , 2015, 273:431-439. [34] Yu K,Yang X,Cheng Y, et al . Thermalanalysis and two- directional air flow thermal management for lithium-ion battery pack[J]. Journal of Power Sources ,2014,270:193-200. [35] Xu Xiaoming(徐晓明),Zhao Youqun(赵又群). Research on battery module thermal characteristics based on double inlet and outlet flow path liquod-cooled system[J]. China Academic Joumal Electronic Publishing House (中国机械工程),2013(3): 313-316,321. [36] Wang T,Tseng K J,Zhao J, et al . Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J]. Applied Energy ,2014, 134:229-238. [37] Chen Qing(陈庆),Zeng Juntang(曾军堂),Yang Xinyu(杨欣宇). Research of phase change materialsin building energy efficiency[J]. Advanced Materials Industry (新材料产业),2008(11):54-58. [38] Goli P,Legedza S,Dhar A, et al. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries[J]. Journal of Power Sources ,2014,248:37-43. [39] Al-Hallaj S,Selman J R. A novel thermal management system for electric vehicle batteries using phase-change material[J]. J. Electrochem. Soc. ,2000,147(9):3231-3236. [40] Kizilel R,Lateef A,Sabbah R, et al . Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature[J]. Journal of Power Sources ,2008,183(1):370-375. [41] Jin Pengchao(靳鹏超),Wang Shixue(王世学). A novel thermal management system for EV batteries using phase-change material[J]. Chemical Industry and Engineering Progress (化工进展),2014(10):2608-2612. [42] Li Jinhui(李金辉),Liu Xiaolan(刘晓兰),Zhang Rongjun (张荣军), et al . Research and development of new phase change materials for heat energy storage[J]. New Chemical Materials (化工新型材料),2006(08):18-21. [43] Li lin(黎林). Research on Li-ion battery management systemin EV[D]. Beijing:Beijing Jiaotong University(北京交通大学), 2009. [44] Zhong Yajuan(仲亚娟),Li Sizhong(李四中),Wei Xinghai (魏兴海), et al . Numerical simulation of the effect of heat conductive fillers on the heat conduction behavior of paraffin phase change energy storage system[J]. New Carbon Materials (新型 炭材料),2009(4):349-353. [45] Xiao Xin(肖鑫),Zhang Peng(张鹏). Thermal character ization of graphite foam/paraffin composite phase change material[J]. Journal of Engineering Thermohysics (工程热物理学报), 2013(3):530-533. [46] Zhang Zhengguo(张正国),Wang Xueze(王学泽),Fang Xiao ming(方晓明). Structure and thermal properties of composite paraffin/expanded graphite phase change material[J]. Journal of South China University of Technology : Natural Science Edition (华南理工大学学报:自然科学版),2006(3):1-5. [47] Ma Bingqian(马炳倩),Li Jianqiang (李建强),Peng Zhijian (彭志坚), et al . Paraffin based composite phase change materials for thermal energy storage:Thermal conductivity enhancement[J]. Energy Storage Science and Technology (储能科学 与技术),2012(2):131-138. [48] Wang Xianglei(汪向磊),Guo Quangui(郭全贵),Zhong Yajuan(仲亚娟), et al . Numerical simulation of the effect of heat conductive fillers on the heat conduction behavior of paraffin phase change energy storage system[J]. New Carbon Materials (新型炭材料),2014(2):149-154. [49] Zhen Wenjuan(郑文娟). Characteristics of paraffin/copper nanoparticles composite phase change materials[D]. Jinan:Qingdao University of Science & Technology(青岛科技大学),2012. [50] Chen Yanghua(陈杨华),Li Yu(李钰),Guo Wenshuai (郭文帅), et al . Thermophysical properties of cool storage of paraffin-based composite phase hange materials filled with carbon nanotubes[J]. Journal of Refrigeration (制冷学报),2014 (5):110-113. [51] Javani N,Dincer I,Naterer G F, et al . Modeling of passive thermal management for electric vehicle battery packs with PCM between cells[J]. Applied Thermal Engineering ,2014,73(1): 307-316. [52] Javani N,Dincer I,Naterer G F, et al . Exergy analysis and optimization of a thermal management system with phase change material for hybrid electric vehicles[J]. Applied Thermal Engineering ,2014,64(1-2):471-482. [53] Li M,Wu Z S. Thermal properties of the graphite/ n- docosane composite PCM[J]. J. Therm. Anal. Calorim .,2013,111(1): 77-83. [54] Karaipekli A,Sari A,Kaygusuz K. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications[J]. Renew. Energ. ,2007,32 (13):2201-2210. [55] Zhang Guoqing(张国庆),Rao Zhonghao(饶中浩),Wu Zhong jie(吴忠杰), et al . Experimental investigation on the heat dissipation effect of power battery pack cooled with phase change materials[J]. Chemical Industry and Engineering Progress (化工进展),2009(1): 23-26,40. [56] Mills A,Al-Hallaj S. Simulation of passive thermal management system for lithium-ion battery packs[J]. Journal of Power Sources ,2005,141(2):307-315. [57] Alrashdan A,Mayyas A T,Al-Hallaj S. Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs[J]. J. Mater. Process Tech .,2010,210(1):174-179. [58] Liu Chenzhen(刘臣臻),Zhang Guoqing(张国庆),Wang Ziyuan(王子缘), et al . Preparation of expanded graphite/paraffin composite materials and their heat dissipation characteristics in power battery thermal management system[J]. Advances in New and Renewable Energy ( 新能源进展),2014(3):233-238. [59] Lin C,Xu S,Chang G, et al . Experiment and simulation of a LiFePO 4 battery pack with a passive thermal management system using composite phase change material and graphite sheets[J] . Journal of Power Sources ,2015,275:742-749. [60] Khateeb S A,Amiruddin S,Farid M, et al . Thermal management of Li-ion battery with phase change material for electric scooters:Experimental validation[J]. Journal of Power Sources , 2005,142(1-2):345-353. [61] Li W Q,Qu Z G,He Y L, et al . Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials[J]. Journal of Power Sources ,2014,255:9-15. [62] Zhang Guoqing(张国庆),Zhang Wenjing(张文静),Zhang Yunyun(张云云), et al . Thermal characteristics of power battery based on copper foam/paraffin wax[J]. Journal of Thermal Science and Technology (热科学与技术),2013(1):42-46. [63] Zhao C Y,Wu Z G. Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite[J]. Solar Energy Materials and Solar Cells ,2011,95(2):636- 643. [64] Javani N,Dincer I,Naterer G F, et al . Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles[J]. International Journal of Heat and Mass Transfer ,2014,72:690-703. [65] Fathabadi H. High thermal performance lithium-ion battery pack including hybrid active-passive thermal management system for using in hybrid/electric vehicles[J]. Energy ,2014,70:529-538. [66] Javani N,Dincer I,Naterer G F. New latent heat storage system with nanoparticles for thermal management of electric vehicles[J]. Journal of Power Sources ,2014,268:718-727. [67] Krishnan S,Garimella S V,Kang S S. A novel hybrid heat sink using phase change materials for transient thermal management of electronics[J]. IEEE T. Compon. Pack T. ,2005,28(2): 281-289. [68] Krishnan S,Garimella S V,Kang S S. A novel hybrid heat sink using phase change materials for transient thermal management of electronics[J]. Itherm. ,2004(1):310-318. [69] Yoo D W,Joshi Y K. Energy efficient thermal management of electronic components using solid-liquid phase change materials[J]. IEEE T. Device Mat. Re. ,2004,4(4):641-649. [70] Allahbakhsh A,Sheydaei M,Mazinani S, et al . Enhanced thermal properties of poly (ethylene tetrasulfide) via expanded graphite incorporation by in situ polymerization method[J]. High Perform. Polym. ,2013,25(5):576-583. [71] Şahan N,Fois M,Paksoy H. Improving thermal conductivity phase change materials:A study of paraffin nanomagnetite composites[J]. Solar Energy Materials and Solar Cells ,2015,137:61-67. [72] Alshaer W G,Nada S A,Rady M A, et al . Thermal management of electronic devices using carbon foam and PCM/nano-composite[J]. International Journal of Thermal Sciences ,2015,89:79-86. [73] Alshaer W G,Nada S A,Rady M A, et al . Numerical investigations of using carbon foam/PCM/nano carbon tubes composites in thermal management of electronic equipment[J]. Energy Conversion and Management ,2015,89:873-884. [74] Rao Zhonghao(饶中浩). Research on power battery thermal management based on solid-liquid phase change heat transfer medium[D]. Guangzhou:South China University of Technology (华南理工大学),2013. [75] Rao Z,Wang S. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews , 2011,15(9):4554-4571. [76] Rao Z,Wang S,Zhang G. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO 4 power battery[J]. Energy Conversion and Management ,2011,52 (12):3408-3414. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[4] | 蒋铖一, 钟尊睿, 吴自德, 彭浩. C8H18~C11H24 混合烷烃体系相变材料的热力学性能[J]. 储能科学与技术, 2022, 11(6): 1957-1967. |
[5] | 周新宇, 栾道成, 胡志华, 凌俊华, 文科林, 刘浪, 阴志铭, 米书恒, 王正云. 含碳二元系相变储热材料储热性能分析选择[J]. 储能科学与技术, 2022, 11(4): 1175-1183. |
[6] | 杜江龙, 林伊婷, 杨雯棋, 练成, 刘洪来. 模拟仿真在锂离子电池热安全设计中的应用[J]. 储能科学与技术, 2022, 11(3): 866-877. |
[7] | 李钰颖, 魏雯珍, 李琦, 吴玉庭. 可用于低中温热能储存的四元硝酸盐/埃洛石/石墨定型复合材料的制备与研究[J]. 储能科学与技术, 2022, 11(3): 1044-1051. |
[8] | 张永学, 王梓熙, 鲁博辉, 杨胜旗, 赵泓宇. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530. |
[9] | 郭云琪, 盛楠, 朱春宇, 饶中浩. 基于模板法制备氧化铝纤维及其石蜡复合相变材料热性能[J]. 储能科学与技术, 2022, 11(2): 511-520. |
[10] | 次恩达, 王会, 李晓卿, 张英, 张振迎, 李建强. 六水硝酸镁-硝酸锂共晶盐/膨胀石墨复合相变材料的制备及性能强化[J]. 储能科学与技术, 2022, 11(1): 30-37. |
[11] | 张晓光, 潘晓楠, 李金铭, 刘丽, 何燕. 电池排布对锂电池组相变热管理性能的影响[J]. 储能科学与技术, 2022, 11(1): 127-135. |
[12] | 安治国, 张显, 祝惠, 张春杰. 蜂窝状CPCM/水冷复合式圆柱型锂电池散热性能[J]. 储能科学与技术, 2022, 11(1): 211-220. |
[13] | 吴熠, 张超, 凌子夜, 张正国, 方晓明. 石蜡/SEBS复合相变材料热疗鼻贴的研究[J]. 储能科学与技术, 2021, 10(4): 1285-1291. |
[14] | 黄菊花, 陈强, 曹铭, 张亚舫, 刘自强, 胡金. 相变材料与水套式液冷结构耦合的圆柱型锂离子电池组热管理仿真分析[J]. 储能科学与技术, 2021, 10(4): 1423-1431. |
[15] | 喻彩梅, 章学来, 华维三. 十水硫酸钠相变储能材料研究进展[J]. 储能科学与技术, 2021, 10(3): 1016-1024. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||