储能科学与技术 ›› 2018, Vol. 7 ›› Issue (5): 869-880.doi: 10.12028/j.issn.2095-4239.2018.0152
詹元杰, 武怿达, 赵俊年, 金周, 张华, 起文斌, 田丰, 贲留斌, 俞海龙, 刘燕燕, 黄学杰
收稿日期:
2018-08-16
出版日期:
2018-09-01
发布日期:
2018-09-01
通讯作者:
黄学杰,研究员,研究方向为锂离子电池相关性能及材料,E-mail:xjhuang@jphy.ac.cn
作者简介:
詹元杰(1988-),男,博士研究生,研究方向为锂离子电池正极材料及其改性,E-mail:zhanyuanjie13@mails.ucas.ac.cn
ZHAN Yuanjie, WU Yida, ZHAO Junnian, JIN Zhou, ZHANG Hua, QI Wenbin, TIAN Feng, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie
Received:
2018-08-16
Online:
2018-09-01
Published:
2018-09-01
Contact:
10.12028/j.issn.2095-4239.2018.0152
摘要: 该文是一篇近两个月的锂电池文献评述,我们以"lithium"和"batter*"为关键词检索了Web of Science从2018年6月1日至2018年7月31日上线的锂电池研究论文,共1706篇,选择其中100篇加以评论。正极材料主要研究了层状材料的结构演变及表面包覆对层状和尖晶石材料循环寿命的影响。高容量的硅、锡基负极材料研究侧重于纳米材料、复合材料、黏结剂及反应机理研究,金属锂负极、固态电解质、锂空电池、锂硫电池的论文也有多篇。理论模拟工作包括材料体相、界面结构和输运性质,除了以材料为主的研究之外,针对电池的原位分析、电池模型的研究论文也有多篇。
中图分类号:
詹元杰, 武怿达, 赵俊年, 金周, 张华, 起文斌, 田丰, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2018.6.1-2018.7.31)[J]. 储能科学与技术, 2018, 7(5): 869-880.
ZHAN Yuanjie, WU Yida, ZHAO Junnian, JIN Zhou, ZHANG Hua, QI Wenbin, TIAN Feng, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2018 to Jul. 31, 2018)[J]. Energy Storage Science and Technology, 2018, 7(5): 869-880.
[1] HE T, LU Y, SU Y F, et al. Sufficient utilization of zirconium ions to improve the structure and surface properties of nickel-rich cathode materials for lithium-ion batteries[J]. ChemSusChem, 2018, 11(10):1639-1648. [2] ZHAO Q, QIN X L, ZHAO H B, et al. A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries[J]. Microelectronics Reliability, 2018, 85:99-108. [3] LIANG J Y, ZENG X X, ZHANG X D, et al. Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries[J]. Journal of the American Chemical Society, 2018, 140(22):6767-6770. [4] LI W D, LIU X M, CELIO H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries:A comprehensive evaluation on long-term cyclability[J]. Advanced Energy Materials, 2008, 8(15):doi:10.1002/aenm.201703154. [5] YOU Y, CELIO H, LI J Y, et al. Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2018, 57(22):6480-6485. [6] CAMBAZ M A, VINAYAN B P, EUCHNER H, et al. Design of nickel-based cation-disordered rock-salt oxides:The effect of transition metal (M=V, Ti, Zr) substitution in LiNi0.5M0.5O2 binary systems[J]. ACS Applied Materials & Interfaces, 2018, 10(26):21957-21964. [7] ZHANG X D, SHI J L, LIANG J Y, et al. Suppressing surface lacttice oxygen release of Li-rich cathode materials via heterostructure spinel Li4Mn5O12 coating[J]. Advanced Materials, 2018, 30(29):doi:10.1002/adma.201801751. [8] BI K, ZHAO S X, HUANG C, et al. Improving low-temperature performance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte for Li-Al-Ti-P-O[J]. Journal of Power Sources, 2018, 389:240-248. [9] FENG S P, KONG X, SUN H Y, et al. Effect of Zr doping on LiNi0.5Mn1.5O4 with ordered or disordered structures[J]. Journal of Alloys and Compounds, 2018, 749:1009-1018. [10] BINI M, BONI P, MUSTARELLI P, et al. Silicon-doped LiNi0.5Mn1.5O4 as a high-voltage cathode for Li-ion batteries[J]. Solid State Ionics, 2018, 320:1-6. [11] DENG M M, TANG Z F, SHAO Y, et al. Enhancing the electrochemical performances of LiNi0.5Mn1.5O4 by Co3O4 surface coating[J]. Journal of Alloys and Compounds, 2018, 762:163-170. [12] CHAE S, SOON J, JEONG H, et al. Passivating film artificially built on LiNi0.5Mn1.5O4 by molecular layer deposition of (pentafluorophenylpropyl)trimethoxysilane[J]. Journal of Power Sources, 2018, 392:159-167. [13] XIANG K, YANG K Q, CARTER W C, et al. Mesoscopic phase transition kinetics in secondary particles of electrode-active materials in lithium-ion batteries[J]. Chemistry of Materials, 2018, 30(13):4216-4225. [14] FAN X L, HU E Y, JI X, et al. High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction[J]. Nature Communications, 2018, 9:doi:https://doi.org/10.1038/s41467-018-04476-2. [15] GAO P, CHEN Z, ZHAO-KARGER Z, et al. A porphyrin complex as a self-conditioned electrode material for high-performance energy storage[J]. Angewandte Chemie-International Edition, 2017, 56(35):10341-10346. [16] GORDON D, HUANG Q, MAGASINSKI A, et al. Mixed metal difluorides as high capacity conversion-type cathodes:Impact of composition on stability and performance[J]. Advanced Energy Materials, 2018, 8(19):doi:10.1002/aemn.201800213. [17] MENG Z, TIAN H J, ZHANG S L, et al. Polyiodide-shuttle restricting polymer cathode for rechargeable lithium/iodine battery with ultralong cycle life[J]. ACS Applied Materials & Interfaces, 2018, 10(21):17933-17941. [18] BHARGAV A, BELL M E, KARTY J, et al. A class of organopolysulfides as liquid cathode materials for high energy-density lithium batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(25):21084-21090. [19] CAI F S, DUAN Y Q, YUAN Z H. Iodine/beta-cyclodextrin composite cathode for rechargeable lithium-iodine batteries[J]. Journal of Materials Science-Materials in Electronics, 2018, 29(13):11540-11545. [20] XU Q, SUN J K, YU Z L, et al. SiOx Encapsulated in graphene bubble film:An ultrastable Li-ion battery anode[J]. Advanced Materials, 2018, 30(25):doi:10.1002/adma.201707430. [21] HAN B, YANG Y, SHI X B, et al. Spontaneous repairing liquid metal/Si nanocomposite as a smart conductive-additive-free anode for lithium-ion battery[J]. Nano Energy, 2018, 50:359-366. [22] HATCHARD T D, FIELDEN R A, OBROVAC M N. Sintered polymeric binders for Li-ion battery alloy anodes[J]. Canadian Journal of Chemistry, 2018, 96(7):765-770. [23] HE T, FENG J R, ZHANG Y, et al. Stress-relieved nanowires by silicon substitution for high-capacity and stable lithium storage[J]. Advanced Energy Materials, 2018, 8(14):doi:10.1002/aemn.201702805. [24] KIM S, JEONG Y K, WANG Y, et al. A "Sticky" mucin-inspired DNA-polysaccharide binder for silicon and silicon-graphite blended anodes in lithium-ion batteries[J]. Advanced Materials, 2018, 30(26):doi:10.1002/adma.201707594. [25] KIM S H, LEE D H, PARK C, et al. Nanocrystalline silicon embedded in an alloy matrix as an anode material for high energy density lithium-ion batteries[J]. Journal of Power Sources, 2018, 395:328-335. [26] LIU J J, YANG Y, LYU P B, et al. Few-layer silicene nanosheets with superior lithium-storage properties[J]. Advanced Materials, 2018, 30(26):doi:10.1002/adma.201800838. [27] BERTOLINI S, BALBUENA P B. Buildup of the solid electrolyte interphase on lithium-metal anodes:Reactive molecular dynamics study[J]. Journal of Physical Chemistry C, 2018, 122(20):10783-10791. [28] SHI Q W, ZHONG Y R, WU M, et al. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(22):5676-5680. [29] DENG W, ZHOU X F, FANG Q L, et al. Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes[J]. Advanced Energy Materials, 2018, 8(12):doi:10.1002/aemn.201703152. [30] ZOLLER F, PETERS K, ZEHETMAIER P M, et al. Making ultrafast high-capacity anodes for lithium-ion batteries via antimony doping of nanosized tin oxide/graphene composites[J]. Advanced Functional Materials, 2018, 28(23):doi:10.1002/adfm.201706529. [31] HAN F D, YUE J, ZHU X Y, et al. Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation[J]. Advanced Energy Materials, 2018, 8(18):doi:10.1002/aenm.201703644. [32] DENG W, ZHU W H, ZHOU X F, et al. Highly reversible Li plating confined in three-dimensional interconnected microchannels toward high-rate and stable metallic lithium anodes[J]. ACS Applied Materials & Interfaces, 2018, 10(24):20387-20395. [33] XU S M, MCOWEN D W, WANG C W, et al. Three-dimensional, solid-state mixed electron-ion conductive framework for lithium metal anode[J]. Nano Letters, 2018, 18(6):3926-3933. [34] ZHAO H, LEI D N, HE Y B, et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector[J]. Advanced Energy Materials, 2018, 8(19):doi:10.1002/aemn.201800266. [35] BAI M H, XIE K Y, YUAN K, et al. A scalable approach to dendrite-free lithium anodes via spontaneous reduction of spray-coated graphene oxide layers[J]. Advanced Materials, 2018, 30(29):doi:10.1002/adma.201801213. [36] CHOUDHURY S, VU D, WARREN A, et al. Confining electrodeposition of metals in structured electrolytes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26):6620-6625. [37] WEN K H, WANG Y L, CHEN S M, et al. Solid-liquid electrolyte as a nanoion modulator for dendrite-free lithium anodes[J]. ACS Applied Materials & Interfaces, 2018, 10(24):20412-20421. [38] ZHANG Y, WANG C W, PASTEL G, et al. 3D wettable framework for dendrite-free alkali metal anodes[J]. Advanced Energy Materials, 2018, 8(18):doi:10.1002/aemn.201800635. [39] LI Y T, CHEN X, DOLOCAN A, et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries[J]. Journal of the American Chemical Society, 2018, 140(20):6448-6455. [40] DONG T T, ZHANG J J, XU G J, et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery[J]. Energy & Environmental Science, 2018, 11(5):1197-1203. [41] YOON K, KIM J J, SEONG W M, et al. Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery[J]. Scientific Reports, 2018, 8:doi:10.1038/S41598-018-26101-4. [42] GARBAYO I, STRUZIK M, BOWMAN W J, et al. Glass-type polyamorphism in Li-garnet thin film solid state battery conductors[J]. Advanced Energy Materials, 2018, 8(12):doi:10.1002/aemn.201702265. [43] SHAO Y J, WANG H C, GONG Z L, et al. Drawing a soft interface:An effective interfacial modification strategy for garnet type solid-state Li batteries[J]. ACS Energy Letters, 2018, 3(6):1212-1218. [44] HAO S M, ZHANG H, YAO W, et al. Solid-state lithium battery chemistries achieving high cycle performance at room temperature by a new garnet-based composite electrolyte[J]. Journal of Power Sources, 2018, 393:128-134. [45] NOH S, NICHOLS W T, CHO M, et al. Importance of mixing protocol for enhanced performance of composite cathodes in all-solid-state batteries using sulfide solid electrolyte[J]. Journal of Electroceramics, 2018, 40(4):293-299. [46] LI Y T, XU H H, CHIEN P H, et al. A perovskite electrolyte that is stable in moist air for lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2018, 57(28):8587-8591. [47] HE M H, CUI Z H, CHEN C, et al. Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries[J]. Journal of Materials Chemistry A, 2018, 6(24):11463-11470. [48] KATAOKA K, NAGATA H, AKIMOTO J. Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application[J]. Scientific Reports, 2018, 8:doi:10.1038/s41598-018-2785-x. [49] LIU Y J, LI C, LI B J, et al. Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries[J]. Advanced Energy Materials, 2018, 8(16):doi:10.1002/aemn.201702374. [50] CULVER S P, KOERVER R, KRAUSKOPF T, et al. Designing ionic conductors:The interplay between structural phenomena and interfaces in thiophosphate-based solid-state batteries[J]. Chemistry of Materials, 2018, 30(13):4179-4192. [51] MEESALA Y, CHEN C Y, JENA A, et al. All-solid-state Li-ion battery using Li1.5Al0.5Ge1.5(PO4)3 as electrolyte without polymer interfacial adhesion[J]. Journal of Physical Chemistry C, 2018, 122(26):14383-14389. [52] WANG C W, ZHANG L, XIE H, et al. Mixed ionic-electronic conductor enabled effective cathode-electrolyte interface in all solid state batteries[J]. Nano Energy, 2018, 50:393-400. [53] WEI Z Y, CHEN S J, WANG J Y, et al. A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode[J]. Journal of Power Sources, 2018, 394:57-66. [54] ALVARADO J, SCHROEDER M A, ZHANG M H, et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries[J]. Materials Today, 2018, 21(4):341-353. [55] CHANG Z H, WANG J T, WU Z H, et al. The electrochemical performance of silicon nanoparticles in concentrated electrolyte[J]. ChemSusChem, 2018, 11(11):1787-1796. [56] HAN J G, BIN LEE J, CHA A, et al. Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries[J]. Energy & Environmental Science, 2018, 11(6):1552-1562. [57] PARK S J, HWANG J Y, YOON C S, et al. Stabilization of lithium-metal batteries based on the in situ formation of a stable solid electrolyte interphase layer[J]. ACS Applied Materials & Interfaces, 2018, 10(21):17985-17993. [58] LIAO B, HU X L, XU M Q, et al. Constructing unique cathode interface by manipulating functional groups of electrolyte additive for graphite/LiNi0.6Co0.2Mn0.2O2 cells at high voltage[J]. Journal of Physical Chemistry Letters, 2018, 9(12):3434-3445. [59] ZHANG T, PORCHER W, PAILLARD E. Towards practical sulfolane based electrolytes:Choice of Li salt for graphite electrode operation[J]. Journal of Power Sources, 2018, 395:212-220. [60] ZHAO W G, ZHENG J M, ZOU L F, et al. High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/electrolyte interphases[J]. Advanced Energy Materials, 2018, 8(19):doi:10.1002/aemn.201800297. [61] GOCKELN M, GLENNEBERG J, BUSSE M, et al. Flame aerosol deposited Li4Ti5O12 layers for flexible, thin film all-solid-state Li-ion batteries[J]. Nano Energy, 2018, 49:564-573. [62] IRIYAMA Y, WADAGUCHI M, YOSHIDA K, et al. 5 V-class bulk-type all-solid-state rechargeable lithium batteries with electrode-solid electrolyte composite electrodes prepared by aerosol deposition[J]. Journal of Power Sources, 2018, 385:55-61. [63] ZHOU X Y, CHEN S, ZHOU H C, et al. Enhanced lithium ion battery performance of nano/micro-size Si via combination of metal-assisted chemical etching method and ball-milling[J]. Microporous and Mesoporous Materials, 2018, 268:9-15. [64] BALOGUN M S, YANG H, LUO Y, et al. Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes[J]. Energy & Environmental Science, 2018, 11(7):1859-1869. [65] LUO C, JI X, CHEN J, et al. Solid-state electrolyte anchored with a carboxylated azo compound for all-solid-state lithium batteries[J]. Angewandte Chemie-International Edition, 2018, 57(28):8567-8571. [66] WU B B, WANG S Y, LOCHALA J, et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries[J]. Energy & Environmental Science, 2018, 11(7):1803-1810. [67] LIN X D, YUAN R M, CAI S R, et al. An open-structured matrix as oxygen cathode with high catalytic activity and large Li2O2 accommodations for lithium-oxygen batteries[J]. Advanced Energy Materials, 2018, 8(18):doi:10.1002/aemn.201800089. [68] LIANG S, XIA Y, LIANG C, et al. A green and facile strategy for the low-temperature and rapid synthesis of Li2S@PC-CNT cathodes with high Li2S content for advanced Li-S batteries[J]. Journal of Materials Chemistry A, 2018, 6(21):9906-9914. [69] ZHAN Y J, YU H L, BEN L B, et al. Application of Li2S to compensate for loss of active lithium in a Si-C anode[J]. Journal of Materials Chemistry A, 2018, 6(15):6206-6211. [70] ZUBAIR U, AMICI J, FRANCIA C, et al. Polysulfide binding to several nanoscale magneli phases synthesized in carbon for long-life lithium-sulfur battery cathodes[J]. ChemSusChem, 2018, 11(11):1838-1848. [71] LIU X C, YANG Y, WU J J, et al. Dynamic hosts for high-performance Li-S batteries studied by cryogenic transmission electron microscopy and in situ X-ray diffraction[J]. ACS Energy Letters, 2018, 3(6):1325-1330. [72] ZHENG J, FAN X L, JI G B, et al. Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li-S batteries[J]. Nano Energy, 2018, 50:431-440. [73] ZHANG N, LI B, LI S M, et al. Mesoporous hybrid electrolyte for simultaneously inhibiting lithium dendrites and polysulfide shuttle in Li-S batteries[J]. Advanced Energy Materials, 2018, 8(16):doi:10.1002/aemn.201703124. [74] ELANGO R, DEMORTIERE A, DE ANDRADE V, et al. Thick binder-free electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity[J]. Advanced Energy Materials, 2018, 8(15):doi:10.1002/aenm.201703031. [75] BARENO J, RAGO N D, DOGAN F, et al. Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O-2/graphite lithium ion cells with poly(vinylidene fluoride) binder. Ⅲ-Chemical changes in the cathode[J]. Journal of Power Sources, 2018, 385:165-171. [76] GIEL H, HENRIQUES D, BOURNE G, et al. Investigation of the heat generation of a commercial 2032(LiCoO2) coin cell with a novel differential scanning battery calorimeter[J]. Journal of Power Sources, 2018, 390:116-126. [77] ZHANG W B, RICHTER F H, CULVER S P, et al. Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2018, 10(26):22226-22236. [78] HISCHIER R, KWON N H, BROG J P, et al. Early-stage sustainability evaluation of nanoscale cathode materials for lithium ion batteries[J]. ChemSusChem, 2018, 11(13):2068-2076. [79] KAFLE J, HARRIS J, CHANG J, et al. Development of wide temperature electrolyte for graphite/LiNiMnCoO2 Li-ion cells:High throughput screening[J]. Journal of Power Sources, 2018, 392:60-68. [80] AKTEKIN B, LACEY M J, NORDH T, et al. Understanding the capacity loss in LiNi0.5Mn1.5O4-Li4Ti5O12 lithium-ion cells at ambient and elevated temperatures[J]. Journal of Physical Chemistry C, 2018, 122(21):11234-11248. [81] HONG M S, YANG C Z, WONG R A, et al. Determining the facile routes for oxygen evolution reaction by in situ probing of Li-O2 cells with conformal Li2O2 films[J]. Joural of the American Chemical Society, 2018, 140(20):6190-6193. [82] JUNG E Y, PARK C S, LEE J C, et al. Influences of graphite electrode on degradation induced by accelerated charging-discharging cycling in lithium-ion battery[J]. Molecular Crystals and Liquid Crystals, 2018, 663(1):90-98. [83] CONNELL J G, ZHU Y S, ZAPOL P, et al. Crystal orientation-dependent reactivity of oxide surfaces in contact with lithium metal[J]. ACS Applied Materials & Interfaces, 2018, 10(20):17471-17479. [84] LANG S Y, XIAO R J, GU L, et al. Interfacial mechanism in lithium-sulfur batteries:How salts mediate the structure evolution and dynamics[J]. Journal of the American Chemical Society, 2018, 140(26):8147-8155. [85] BAE Y, KO D H, LEE S, et al. Enhanced stability of coated carbon electrode for Li-O-2 batteries and its limitations[J]. Advanced Energy Materials, 2018, 8(16):doi:10.1002/aenm.201702661. [86] JONES J P, JONES S C, KRAUSE F C, et al. In situ polysulfide detection in lithium sulfur cells[J]. Journal of Physical Chemistry Letters, 2018, 9(13):3751-3755. [87] ILOTT A J, JERSCHOW A. Probing solid-electrolyte interphase(SEI) growth and ion permeability at undriven electrolyte-metal interfaces using Li-7 NMR[J]. Journal of Physical Chemistry C, 2018, 122(24):12598-12604. [88] HAYAMIZU K, SEKI S, HAISHI T. Non-uniform lithium-ion migration on micrometre scale for garnet-and NASICON-type solid electrolytes studied by Li-7 PGSE-NMR diffusion spectroscopy[J]. Physical Chemistry Chemical Physics, 2018, 20(26):17615-17623. [89] NGUYEN V S, MAI V H, SENZIER P A, et al. Direct evidence of lithium ion migration in resistive switching of lithium cobalt oxide nanobatteries[J]. Small, 2018, 14(24):doi:10.1002/smll.201801038. [90] WOOD K N, STEIRER K X, HAFNER S E, et al. Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-04762-82490. [91] HABTE B T, JIANG F M. Microstructure reconstruction and impedance spectroscopy study of LiCoO2, LiMn2O4 and LiFePO4 Li-ion battery cathodes[J]. Microporous and Mesoporous Materials, 2018, 268:69-76. [92] KLEINER K, STREHLE B, BAKER A R, et al. Origin of high capacity and poor cycling stability of Li-rich layered oxides:A long-duration in situ synchrotron powder diffraction study[J]. Chemistry of Materials, 2018, 30(11):3656-3667. [93] FINSTERBUSCH M, DANNER T, TSAI C L, et al. High capacity garnet-based all-solid-state lithium batteries:Fabrication and 3D-microstructure resolved modeling[J]. ACS Applied Materials & Interfaces, 2018, 10(26):22329-22339. [94] CHOI Y S, LEE J C. Phase transition behaviors and formation of electrically resistive phases at the anode:Major factors determining the energy efficiency of Li-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(24):11531-11541. [95] BRAUN P, UHLMANN C, WEISS M, et al. Assessment of all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2018, 393:119-127. [96] BRYDEN T S, DIMITROV B, HILTON G, et al. Methodology to determine the heat capacity of lithium-ion cells[J]. Journal of Power Sources, 2018, 395:369-378. [97] XIAO W J, XIN C, LI S B, et al. Insight into fast Li diffusion in Li-excess spinel lithium manganese oxide[J]. Journal of Materials Chemistry A, 2018, 6(21):9893-9898. [98] CORTES H A, VILDOSOLA V L, BARRAL M A, et al. Effect of halogen dopants on the properties of Li2O2:Is chloride special?[J]. Physical Chemistry Chemical Physics, 2018, 20(25):16924-16931. [99] HANNAH D C, GAUTAM G S, CANEPA P, et al. On the balance of intercalation and conversion reactions in battery cathodes[J]. Advanced Energy Materials, 2018, 8(20):doi:10.1002/aenm.201800379. [100] CHEN Y Y, BEN L B, CHEN B, et al. Impact of high valence state cation Ti/Ta surface doping on the stabilization of spinel LiNi0.5Mn1.5O4 cathode materials:A systematic density functional theory investigation[J]. Advanced Materials Interfaces, 2018, 5(12):doi:10.1002/adml.201800077. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||