[1] CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices[J]. Chemical Reviews, 2018:doi:10.1021/acs.chemrev.8b00241.
[2] HERNANDEZ C R, ETIEMBLE A, DOUILLARD T, et al. A Facile and very effective method to enhance the mechanical strength and the cyclability of Si-based electrodes for Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(6):doi:10.1002/aenm.201701787.
[3] KWON T W, JEONG Y K, DENIZ E, et al. Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries[J]. ACS Nano, 2015, 9(11):11317-11324.
[4] CHEN C, LEE S H, CHO M, et al. Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(4):2658-2665.
[5] KWON T W, CHOI J W, COSKUN A. The emerging era of supramolecular polymeric binders in silicon anodes[J]. Chemical Society Reviews, 2018, 47(6):2145-2164.
[6] JIN Y, ZHU B, LU Z D, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery[J]. Advanced Energy Materials, 2017, 7(23):doi:10.1002/aenm.201700715.
[7] LEE J I, KANG H, PARK K H, et al. Amphiphilic graft copolymers as a versatile binder for various electrodes of high-performance lithium-ion batteries[J]. Small, 2016, 12(23):3119-3127.
[8] KOO B, KIM H, CHO Y, et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angewandte Chemie-International Edition, 2012, 51(35):8762-8767.
[9] MAGASINSKI A, ZDYRKO B, KOVALENKO I, et al. Toward efficient binders for Li-ion battery Si-based anodes:Polyacrylic acid[J]. ACS Applied Materials & Interfaces, 2010, 2(11):3004-3010.
[10] SONG J X, ZHOU M J, YI R, et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries[J]. Advanced Functional Materials, 2014, 24(37):5904-5910.
[11] KOVALENKO I, ZDYRKO B, MAGASINSKI A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 334(6052):75-79.
[12] RYOU M H, KIM J, LEE I, et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries[J]. Advanced Materials, 2013, 25(11):1571-1576.
[13] WU M Y, XIAO X C, VUKMIROVIC N, et al. Toward an ideal polymer binder design for high-capacity battery anodes[J]. Journal of the American Chemical Society, 2013, 135(32):12048-12056.
[14] WANG C, WU H, CHEN Z, et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J]. Nature Chemistry, 2013, 5(12):1042-1048.
[15] XU Z, YANG J, ZHANG T, et al. Silicon microparticle anodes with self-healing multiple network binder[J]. Joule, 2018, 2(5):950-961.
[16] ZHANG L, ZHANG L Y, CHAI L L, et al. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(44):19036-19045.
[17] WU H, YU G H, PAN L J, et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles[J]. Nature Communications, 2013, 4(3):doi:10.1038/ncomms2941.
[18] SOLVAY. Solef-PVDF for Li-ion batteries[EB/OL]. https://www.solvay.cn/zh/binaries/Solef-PVDF-for-Li-Ion-Batteries_EN.pdf-220706.pdf.
[19] Chengdu INDIGO Power Source Co., Ltd.. Product show[EB/OL]. http://www.cd-ydl.com/index.php?go=product-12.html.
[20] YEN J P, CHANG C C, LIN Y R, et al. Effects of styrene-butadiene rubber/carboxymethylcellulose (SBR/CMC) and polyvinylidene difluoride (PVDF) binders on low temperature lithium ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(10):A1811-A1818.
[21] PARK Y S, OH E S, LEE S M. Effect of polymeric binder type on the thermal stability and tolerance to roll-pressing of spherical natural graphite anodes for Li-ion batteries[J]. Journal of Power Sources, 2014, 248:1191-1196.
[22] LI C C, WANG Y W. Binder distributions in water-based and organic-based LiCoO2 electrode sheets and their effects on cell performance[J]. Journal of the Electrochemical Society, 2011, 158(12):A1361-A1370.
[23] YABUUCHI N, KINOSHITA Y, MISAKI K, et al. Electrochemical properties of LiCoO2 electrodes with latex binders on high-voltage exposure[J]. Journal of the Electrochemical Society, 2015, 162(4):A538-A544.
[24] PORCHER W, CHAZELLE S, BOULINEAU A, et al. Understanding polyacrylic acid and lithium polyacrylate binder behavior in silicon based electrodes for Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(14):A3633-A3640.
[25] HU B, SHKROB I A, ZHANG S, et al. The existence of optimal molecular weight for poly(acrylic acid) binders in silicon/graphite composite anode for lithium-ion batteries[J]. Journal of Power Sources, 2018, 378:671-676.
[26] SHIN D, PARK H, PAIK U. Cross-linked poly(acrylic acid)-carboxymethyl cellulose and styrene-butadiene rubber as an efficient binder system and its physicochemical effects on a high energy density graphite anode for Li-ion batteries[J]. Electrochemistry Communications, 2017, 77:103-106. |