[1] LI Jianlin, DU Zhijia, RUTHER R E, et al. Toward low-cost, highenergy density, and high-power density lithium-ion batteries[J]. Journal of the Minerals, Metals & Materials Society, 2017, 69(9):1484-1496.
[2] YUAN Lixia, WANG Zhaohui, ZHANG Wuxing, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4:269-284.
[3] SUN Chunwen, RAJASEKHARA S, GOODENOUGH J B, et al. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode[J]. Journal of the American Chemical Society, 2011, 133:2132-2135.
[4] YAMANAKA T, MINATO T, OKAZAKI K I,et al. Evolution and migration of lithium-deficient phases during electrochemical delithiation of large single crystals of LiFePO4[J]. ACS Applied Energy Materials, 2018, 1(3):1140-1145.
[5] XIAO Lifen, CAO Yuliang,XIAO Jie, et al. A soft approach to encapsulate sulfur Polyaniline nanotubes for lithium-sulfur batteries with long cycle life[J]. Advanced Materials, 2012, 24:1176-1181.
[6] WANG Yang, SAHADEO E, RUBLOFF G, et al. High-capacity lithium sulfur battery and beyond:A review of metal anode protection layers and perspective of solid-state electrolytes[J]. Journal of Materials Science, 2019, 54(5):3671-3693.
[7] MING Jun, LI Mengliu, KUMAR P, et al. Redox species-based electrolytes for advanced rechargeable lithium ion batteries[J]. ACS Energy Letters, 2016, 1:529-534.
[8] KIM C S, GUERFI A, HOVINGTON P, ct al. Facile dry synthesis of sulfur-LiFePO4 core-shell composite for the scalable fabrication of lithium/sulfur battcrics[J]. Electrochemistry Communications, 2013,32:35-38.
[9] CHEN Xiang, PENG Hongjie, ZHANG Rui,et al. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries:S-or Li-binding on first-row transition-metal sulfides[J]. ACS Energy Letters, 2017, 2(4):795-801.
[10] XIAO Penghao, HENKELMAN G. Kinetic Monte Carlo Study of Li intercalation in LiFePO4[J]. ACS Nano, 2018, 12(1):844-851.
[11] 朱蕾, 贾荻, 陈俊超, 等. 石墨烯修饰改性制备锂离子电池LiFePO4/LiNi0.8Co0.15Al0.05O2复合正极材料及其性能[J]. 无机化学学报, 2018, 34(8):1501-1510. ZHU Lei, JIA Di, CHEN Junchao, et al. Synthesis and properties of LiFePO4/LiNi0.8Co0.15Al0.05O2 composite cathode material modificated by graphene for lithium ion battery[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(8):1501-1510.
[12] JI Xiulei, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8:500-506.
[13] HUANG Qizhao, LI Hong, GRATZEL M, et al. Reversible chemical delithiation/lithiation of LiFePO4:Towards a redox flow lithium-ion battery[J]. Physical Chemistry Chemical Physics, 2013, 15:1793-1797.
[14] LI Jingfa, YANG Liuqing, YUAN Boyu, et al. Combined mediator and electrochemical charging and discharging of redox targeting lithiumsulfur flow batteries[J]. Materials Today Energy, 2017, 5:15-21.
[15] PENG Hongjie, ZHANG Ge, CHEN Xiang, et al. Enhanced electrochemical kinetics on conductive polar mediators for lithiumsulfur batteries[J]. Angewandte Chemie, 2016, 128:1-6.
[16] LIU S Y, CHEN X, ZHAO J Y, et al. Uncovering the role of Nb modification in improving the structure stability and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode charged at higher voltage of 4.5 V[J]. Journal of Power Sources, 2018, 374:149-157.
[17] LIANG Zheng, ZHENG Guangyuan, LI Weiyang, et al. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure[J]. ACS Nano, 2014, 8(5):5249-5256.
[18] WANG Chao, WANG Xusheng, YANG Yuan, et al. Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery[J]. Nano Letters, 2015, 15, 1796-1802.
[19] NIU Chaojiang, LEE Hongkyung, CHEN Shuru, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, doi:10.1038/s41560-019-0390-6.
[20] LI Hong. Practical evaluation of Li-ion batteries[J]. Joule, 2019, 3:911-914. |