储能科学与技术 ›› 2019, Vol. 8 ›› Issue (6): 1107-1115.doi: 10.12028/j.issn.2095-4239.2019.0137
金光, 肖安汝, 刘梦云
收稿日期:
2019-06-14
修回日期:
2019-07-03
出版日期:
2019-11-01
发布日期:
2019-07-11
通讯作者:
郭少鹏,教授,主要研究方向相变蓄热与强化传热,E-mail:xiaoanru411x@126.com。
作者简介:
金光(1970-),女,教授,主要从事相变蓄热技术和节能环保供暖方面的研究,E-mail:xarxyn@126.com
基金资助:
JIN Guang, XIAO Anru, LIU Mengyun
Received:
2019-06-14
Revised:
2019-07-03
Online:
2019-11-01
Published:
2019-07-11
摘要: 相变储能是通过相变材料吸/放热过程来实现能量储存的技术,它能够解决热量供需时间、空间和强度上的不匹配,并以其高储能密度成为储能领域的研究热点,但由于相变材料的热导率较低,使其应用受到限制。针对相变储能材料熔化/凝固过程中热导率低引起的传热速率慢的问题,从优化储能设备结构、添加剂提高相变材料热导率以及联合强化传热技术三方面综述国内外相变材料储能强化传热技术的最新进展。通过比较各种强化传热方式的优劣,实验和模拟均显示复合强化传热即可解决相变材料热导率低,又增大传热面积,从而提高相变材料的传热性能;多孔金属作为导热添加剂增强导热效果更好;并提出了相变储能强化传热技术未来需要解决的相关技术难题。
中图分类号:
金光, 肖安汝, 刘梦云. 相变储能强化传热技术的研究进展[J]. 储能科学与技术, 2019, 8(6): 1107-1115.
JIN Guang, XIAO Anru, LIU Mengyun. Research progress on heat transfer enhancement technology of phase change energy storage[J]. Energy Storage Science and Technology, 2019, 8(6): 1107-1115.
[1] AZZUNI A, BREYER C. Energy security and energy storage technologies[J]. Energy Procedia, 2018, 155:237-258. [2] MILANESE C, JENSEN T R, HAUBACK B C, et al. Complex hydrides for energy storage[J]. International Journal of Hydrogen Energy, 2019, 44(15):7860-7874. [3] TAN Zhongfu, TAN Qingkun, WANG Yuwei. A critical-analysis on the development of energy storage industry in China[J]. Journal of Energy Storage, 2018, 18:538-548. [4] 吴娟, 龙新峰. 太阳能热化学储能研究进展[J]. 化工进展, 2014, 33(12):3238-3245. WU Jian, LONG Xinfeng. Research progress of solar thermochemical energy storage[J]. Chemical Industry and Engineering Progress, 2014, 33(12):3238-3245. [5] LAKSHMI D V N, LAYEK A, KUMAR P M. Performance analysis of trapezoidal corrugated solar air heater with sensible heat storage material[J]. Energy Procedia, 2017, 109:463-470. [6] 杨兆晟, 张群力, 张文婧, 等. 中温相变蓄热系统强化传热方法研究进展[J]. 化工进展, 2019, doi:10.16085/j·issn·10000-6613·2019-0160. YANG Zhaosheng, ZHANG Qunli, ZHANG Wenqian, ZONG Hongshen. Research progress of heat transfer enhancement methods for medium temperature phase change heat storage system[J]. Chemical Industry and Engineering Progress, 2019, doi:10.16085/j·issn·10000-6613·2019-0160. [7] LING Deli, MO Genmao, JIAO Qingtai, et al. Research on solar heating system with phase change thermal energy storage[J]. Energy Procedia, 2016, 91:415-420. [8] NOFAL M, PAN Yayue, AL-HALLAJ S. Selective laser sintering of phase change materials for thermal energy storage applications[J]. Procedia Manufacturing, 2017, 10:851-865. [9] 刘娜, 孙静林, 毛荐其. 储能技术研究景观辨识及演化探析[J]. 科学学与科学技术管理, 2017, 38(4):137-148. LIU Na, SHUN Jinlin, MAO Jianqi. Research on energy storage technology landscape identification and evolution[J]. Science and Management of Science and Technology, 2017, 38(4):137-148. [10] 孙峰, 彭浩, 凌祥. 中高温热化学反应储能研究进展[J]. 储能科学与技术, 2015, 4(6):577-584. SUN Feng, PENG Hao, LIN Xiang. Research progress on energy storage by thermochemical reactions at medium and high temperatures[J]. Energy Storage Science and Technology, 2015, 4(6):577-584. [11] DEL PERO C, ASTE N, PAKSOY H, et al. Energy storage key performance indicators for building application[J]. Sustainable Cities and Society, 2018, 40:54-65. Renewable and Sustainable Energy Reviews, 2009, 13(9):2385-2396. [12] N'TSOUKPOE K E, LIU H, LE PIERRÈS N, et al. A review on longterm sorption solar energy storage[J]. Renewable and Sustainable Energy Reviews, 2009, 13:2385-2396. [13] 孟令然, 郭立江, 李晓禹, 等. 水合盐相变储能材料的研究进展[J]. 储能科学与技术, 2017, 6(4):623-632. MENG Lingran, GUO Lijiang, LI Xiaoyu, et al. Research progress of hydrated salt phase change energy storage materials[J]. Energy Storage Science and Technology, 2017, 6(4):623-632. [14] SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2):318-345. [15] FERNANDES D, PITIÉ F, CÁCERES G. Thermal energy storage:"How previous findings determine current research priorities"[J]. Energy, 2012, 39(1):246-25. [16] 彭犇, 岳昌盛, 邱桂博, 等. 相变储能材料的最新研究进展与应用[J]. 材料导报, 2018(S1):248-252. PENG B, YUE C S, QIU G B, et al. The recent research progress and application of phase change and energy storage materials[J]. Materials Review, 2018(S1):248-252. [17] 李贝, 刘道平, 杨亮. 复合相变蓄热材料研究进展[J]. 制冷学报, 2017, 38(4):36-43. LI Bei, LIU Daoping, YANG Liang. Research progress of composite phase change heat storage materials[J]. Journal of Refrigeration, 2017, 38(4):36-43. [18] 张天驰, 俞海云, 冒爱琴, 等. 有机相变储能材料导热增强方法研究进展[J]. 过程工程学报, 2017, 17(1):201-208. ZHANG Tianchi, YU Haiyun, MAO Aiqing, et al. Research progress in thermal conductivity enhancement methods of organic phase change energy storage materials[J]. Chinese Journal of Process Engineering, 2017, 17(1):201-208. [19] 莫友彬, 余慧群, 廖艳芳, 等. 石蜡相变储能材料的设计研究进展[J]. 现代化工, 2016, 36(8):50-54. MO Youbin, YU Huiqun, LIAO Yanfang, et al. Research progress in design of paraffin phase change energy storage materials[J]. Modern Chemical Industry, 2016, 36(8):50-54. [20] HUANG X, ALVA G, JIA Y T, et al. Morphological characterization and applications of phase change materials in thermal energy storage:A review[J]. Renewable and Sustainable Energy Reviews, 2017, 72:128-145. [21] NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications:A review[J]. International Journal of Heat and Mass Transfer, 2019, 129:491-523. [22] 华维三, 章学来, 罗孝学, 等. 纳米金属/石蜡复合相变蓄热材料的实验研究[J]. 太阳能学报, 2017(6):1723-1728. HUA Weisan, ZHANG Xuelai, LUO Xiaoxue, et al. Experimental study of nanometal-paraffin composite phase change heat storage material[J]. Acta Energiae Solaris Sinica, 2017(6):1723-1728. [23] SHAH K W. A review on enhancement of phase change materials-A nanomaterials perspective[J]. Energy and Buildings. 2018, 175:57-68. [24] SRIVATSA P V S S, BABY R, BALAJI C. Numerical investigation of PCM based heat sinks with embedded metal foam/crossed plate fins[J]. Numerical Heat Transfer, Part A:Applications, 2014, 66(10):1131-1153. [25] ZHONG Y J, GUO Q G, LI S Z, et al. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2010, 94(6):1011-1014. [26] ZHAO Y, ZHAO C Y, XU Z G, et al. Modeling metal foam enhanced phase change heat transfer in thermal energy storage by using phase field method[J]. International Journal of Heat and Mass Transfer, 2016, 99:170-181. [27] ZHONG L M, ZHANG X W, LUAN Y, et al. Preparation and thermal properties of porous heterogeneous composite phase change materials based on molten salts/expanded graphite[J]. Solar Energy, 2014, 107:63-73. [28] 陈素清, 黄国波, 鲍建设. 石墨烯导热增强相变储能材料的制备及性能[J]. 新型炭材料, 2018, 33(3):262-267. CHEN Suqing, HUAN Guobo, BAO Jianshe. Preparation and properties of graphene heat conduction enhanced phase change energy storage material[J]. New Carbon Material, 2018, 33(3):262-267. [29] YANG Xiaohu, YU Jiabang, GUO Zengxu, et al. Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube[J]. Applied Energy, 2019, 239:142-156. [30] MERLIN K, DELAUNAY D, SOTO J, et al. Heat transfer enhancement in latent heat thermal storage systems:Comparative study of different solutions and thermal contact investigation between the exchanger and the PCM[J]. Applied Energy, 2016, 166:107-116. [31] SHAIKH S, LAFDI K, HALLINAN K. Carbon nanoadditives to enhance latent energy storage of phase change materials[J]. Journal of Applied Physics, 2008, 103(9):094302. [32] MOTAHAR S, NIKKAM N, ALEMRAJABI A A, et al. Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles[J]. International Communications in Heat and Mass Transfer, 2014, 59:68-74. [33] WANG J F, XIE H Q, XIN Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes[J]. Thermochimica Acta, 2009, 488(1):39-42. [34] DSILVA WINFRED RUFUSS D, SUGANTHI L, INIYAN S, et al. Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity[J]. Journal of Cleaner Production, 2018, 192:9-29. [35] JEGADHEESWARAN S, POHEKAR S D. Exergy analysis of particle dispersed latent heat thermal storage system for solar water heaters[J]. Journal of Renewable and Sustainable Energy, 2010, 2(2):023105. [36] KUMARESAN V, VELRAJ R, DAS S K. The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification[J]. Heat and Mass Transfer, 2012, 48:1345-1355. [37] SCIACOVELLI A, COLELLA F, VERDA V. Melting of PCM in a thermal energy storage unit:Numerical investigation and effect of nanoparticle enhancement[J]. International Journal of Energy Research, 2013, 37(13):1610-1623. [38] LI M. A nano-graphite/paraffin phase change material with high thermal conductivity[J]. Applied Energy, 2013, 106(11):25-30. [39] LOHRASBI S, SHEIKHOLESLAMI M, GANJI D D. Multi-objective RSM optimization of fin assisted latent heat thermal energy storage system based on solidification process of phase change material in presence of copper nanoparticles[J]. Applied Thermal Engineering, 2017, 118:430-447. [40] SHEIKHOLESLAMI M, LOHRASBI S, GANJI D D. Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method[J]. Applied Thermal Engineering, 2016, 107:154-166. [41] YUAN Y P, CAO X L, XIANG B, et al. Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage[J]. Solar Energy, 2016, 136:365-378. [42] STRITIH U. An experimental study of enhanced heat transfer in rectangular PCM thermal storage[J]. International Journal of Heat and Mass Transfer, 2004, 47(12/13):2841-2847. [43] MAT S, AL-ABIDI A A, SOPIAN K, et al. Enhance heat transfer for PCM melting in triplex tube with internal-external fins[J]. Energy Conversion and Management, 2013, 74:223-236. [44] AGYENIM F, EAMES P, SMYTH M. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins[J]. Solar Energy, 2009, 83(9):1509-1520. [45] RATHOD M K, BANERJEE J. Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins[J]. Applied Thermal Engineering, 2015, 75:1084-1092. [46] 李南烁, 汤梓聪, 伍健宜, 等. 翅片盘管式相变储热器传热性能研究[J]. 广东工业大学学报, 2019(2):91-96. LING Nanshuo, TANG Zicong, WU Jianyi, et al. Study on heat transfer performance of fin coil phase change heat storage[J]. Journal of Guangdong University of Technology, 2019(2):91-96. [47] 庞宇, 翟郑佳, 王进. 纳米流体在换热器领域的研究进展[J]. 现代化工, 2018, 38(6):43-47. PANG Yu, ZHAI Zhenjia, WANG Jin. Research progress of nanofluids in heat exchangers[J]. Modern Chemical Industry, 2018, 38(6):43-47. [48] 张云峰, 夏寻, 罗嵩容, 李涛. 磁纳米流体热管太阳能集热装置换热性能试验[J]. 热能动力工程, 2018, 33(2):117-123. ZHANG Yunfeng, XIA Xun, LUO Songrong, LI Tao. Heat transfer performance test of magnetic nanofluid heat pipe solar collector[J]. Thermal Power Engineering, 2018, 33(2):117-123. [49] BRAHIM T, DHAOU M H, JEMNI A. Theoretical and experimental investigation of plate screen mesh heat pipe solar collector[J]. Energy Conversion and Management, 2014, 87:428-438. [50] BYON C. Heat pipe and phase change heat transfer technologies for electronics cooling[M]. IntechOpen, 2016. [51] SHABGARD H, FAGHRI A, BERGMAN T L, et al. Numerical simulation of heat pipe-assisted latent heat thermal energy storage unit for dish-stirling systems[J]. Journal of Solar Energy Engineering, 2013, 136(2):021025. [52] MEHTA D S, SOLANKI K, RATHOD M K, et al. Thermal performance of shell and tube latent heat storage unit:Comparative assessment of horizontal and vertical orientation[J]. Journal of Energy Storage, 2019, 23:344-362. [53] Zhao Jiateng, Rao Zhonghao, Liu Chenzhen, et al. Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management[J]. International Journal of Heat and Mass Transfer, 2016, 99:252-260. [54] 罗孝学, 章学来, 华维三. 一种脉动热管相变蓄放热试验装置的设计[J]. 流体机械, 2017, 45(4):63-67. LUO Xiaoxue, ZHANG Xuelai, HUA Weisan. Design of a phase change heat storage and release test device for pulsating heat pipe[J]. Fluid Machinery, 2017, 45(4):63-67. [55] NITHYANANDAM K, PITCHUMANI R. Analysis and optimization of a latent thermal energy storage system with embedded heat pipes[J]. International Journal of Heat and Mass Transfer, 2011, 54(21/22):4596-4610. [56] LOHRASBI S, MIRY S Z, GORJI-BANDPY M, et al. Performance enhancement of finned heat pipe assisted latent heat thermal energy storage system in the presence of nano-enhanced H2O as phase change material[J]. International Journal of Hydrogen Energy, 2017, 42(10):6526-6546. [57] LOHRASBI S, GORJI-BANDPY M, GANJI D D. Thermal penetration depth enhancement in latent heat thermal energy storage system in the presence of heat pipe based on both charging and discharging processes[J]. Energy Conversion and Management, 2017, 148:646-667. [58] 李凤飞, 刁彦华, 赵耀华, 等. 平板微热管式相变蓄热装置蓄放热特性研究[J]. 工程热物理学报, 2016, 37(6):1253-1261. LI Fengfei, DIAO Yanhua, ZHAO Yaohua, et al. Study on heat storage and release characteristics of flat micro heat pipe phase change heat storage device[J]. Journal of Engineering Thermophysics, 2016, 37(6):1253-1261. [59] 叶三宝, 刁彦华, 赵耀华. 新型平板热管相变蓄热器蓄放热性能分析[J]. 电力建设, 2014, 35(7):136-140. YE Sanbao, DIAO Yanhua, ZHAO Yaohua. Analysis of heat storage and release performance of new flat plate heat pipe phase change regenerator[J]. Electric Power Construction, 2014, 35(7):136-140. [60] JUNG E G, BOO J H. Thermal analytical model of latent thermal storage with heat pipe heat exchanger for concentrated solar power[J]. Solar Energy, 2014, 102:318-332. [61] KHALIFA A, TAN L, DATE A, et al. A numerical and experimental study of solidification around axially finned heat pipes for high temperature latent heat thermal energy storage units[J]. Applied Thermal Engineering, 2014, 70(1):609-619. [62] TIARI S, QIU S G, MAHDAVI M. Numerical study of finned heat pipeassisted thermal energy storage system with high temperature phase change material[J]. Energy Conversion and Management, 2015, 89:833-842. [63] TIARI S, QIU S G. Three-dimensional simulation of high temperature latent heat thermal energy storage system assisted by finned heat pipes[J]. Energy Conversion and Management, 2015, 105:260-271. [64] KHALIFA A, TAN L, DATE A, ET AL. Performance of suspended finned heat pipes in high-temperature latent heat thermal energy storage[J]. Applied Thermal Engineering, 2015, 81:242-252. [65] SEENIRAJ R V, NARASIMHAN N L. Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs[J]. Solar Energy, 2008, 82(6):535-542. [66] SHARIFI N, BERGMAN T L, ALLEN M J, et al. Melting and solidification enhancement using a combined heat pipe, foil approach[J]. International Journal of Heat and Mass Transfer, 2014, 78:930-941. [67] REN Qinlong, MENG Fanlong, GUO Penghua. A comparative study of PCM melting process in a heat pipe-assisted LHTES unit enhanced with nanoparticles and metal foams by immersed boundary-lattice Boltzmann method at pore-scale[J]. International Journal of Heat and Mass Transfer, 2018, 121:1214-1228. [68] XIE Y, CHI P, ZHOU Y, et al. Heat Transfer enhancement for thermal energy storage using fin-copper foam within phase change materials[J]. Heat Transfer Engineering, 2014, doi:10.1080/01457632.2014.909203. [69] ALLEN M J, SHARIFI N, FAGHRI A, et al. Effect of inclination angle during melting and solidification of a phase change material using a combined heat pipe-metal foam or foil configuration[J]. International Journal of Heat & Mass Transfer, 2015, 80:767-780. [70] NITHYANANDAM K, PITCHUMANI R. Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power[J]. Applied Energy, 2013, 103(1):400-415. |
[1] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 曾伟, 熊俊杰, 李建林, 马速良, 武亦文. 基于权重自适应鲸鱼优化算法的多能系统储能电站最优配置[J]. 储能科学与技术, 2022, 11(7): 2241-2249. |
[4] | 韩健民, 薛飞宇, 梁双印, 乔天舒. 模糊控制优化下的混合储能系统辅助燃煤机组调频仿真[J]. 储能科学与技术, 2022, 11(7): 2188-2196. |
[5] | 鲁志颖, 江杉, 李全龙, 马可心, 傅腾, 郑志刚, 刘志成, 李淼, 梁永胜, 董知非. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
[6] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[7] | 董树锋, 刘灵冲, 唐坤杰, 赵海祺, 徐成司, 林立亨. 基于Simulink和低代码控制器的储能控制实验教学方法[J]. 储能科学与技术, 2022, 11(7): 2386-2397. |
[8] | 郭雨涵, 郁丹, 杨鹏, 王子绩, 王金涛. 基于贪婪算法的分布式储能系统容量优化配置方法[J]. 储能科学与技术, 2022, 11(7): 2295-2304. |
[9] | 袁性忠, 胡斌, 郭凡, 严欢, 贾宏刚, 苏舟. 欧盟储能政策和市场规则及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2344-2353. |
[10] | 刘国静, 李冰洁, 胡晓燕, 岳芬, 徐际强. 澳大利亚储能相关政策与电力市场机制及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2332-2343. |
[11] | 李仲博, 汉京晓, 王成成, 杨慧, 杨娜, 尹少武, 王立, 童莉葛, 唐志伟, 丁玉龙. 热化学反应器放热过程模拟及参数影响规律[J]. 储能科学与技术, 2022, 11(7): 2133-2140. |
[12] | 杨孝杰, 王海云, 蒋中川, 宋章华. 应用于飞轮储能的BLDC电机功率双向流动策略设计[J]. 储能科学与技术, 2022, 11(7): 2233-2240. |
[13] | 李洪涛, 张帅, 李旭东, 纪运广, 孙明旭, 李欣. 单罐式储能换热系统在热风无纺布工艺中的应用[J]. 储能科学与技术, 2022, 11(7): 2250-2257. |
[14] | 吴田, 林闽城, 海浩, 孙海渔, 温兆银, 马福元. 面向一次调频的镍氢电池系统开发[J]. 储能科学与技术, 2022, 11(7): 2213-2221. |
[15] | 刘连德, 何江, 周家旭, 李翠萍, 李凯强, 朱星旭, 严干贵, 李军徽. 含高比例风光发电的电力系统中抽蓄电站的优化控制策略[J]. 储能科学与技术, 2022, 11(7): 2197-2205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||