[1] NEUBAUER J, PESARAN A. The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications[J]. Journal of Power Sources, 2011, 196(23):10351-10358.
[2] ZENG X, LI J, SHEN B. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid[J]. Journal of Hazardous Materials, 2015, 295:112-118.
[3] XIAO J, LI J, XU Z. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy[J]. Journal of Hazardous Materials, 2017, 338:124-131.
[4] HU J, ZHANG J, LI H, et al. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries[J]. Journal of Power Sources, 2017, 351:192-199.
[5] LI L, BIAN Y, ZHANG X, et al. Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study[J]. Journal of Power Sources, 2018, 377:70-79.
[6] MARTINEZ-LASERNA E, SARASKETA-ZABALA E, VILLARREAL I, et al. Technical viability of battery second life:A study from the ageing perspective[J]. IEEE Transactions on Industry Applications, 2018:1.
[7] TONG Shijie, FUNG T, KLEIN M P, et al. Demonstration of reusing electric vehicle battery for solar energy storage and demand side management[J]. Journal of Energy Storage, 2017, 11:200-210.
[8] LIAO Q, MU M, ZHAO S, et al. Performance assessment and classification of retired lithium ion battery from electric vehicles for energy storage[J]. International Journal of Hydrogen Energy, 2017, 42(30):18817-18823.
[9] IDJIS H, COSTA P D. Is electric vehicles battery recovery a source of cost or profit?[J]. Springer International Publishing, 2017:117-134.
[10] DONG S, SHUANG X. State of health prediction of second-use lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2018, 33(9):2121-2129.
[11] SHI L, SHUAI J, XU K. Fuzzy fault tree assessment based on improved AHP for fire and explosion accidents for steel oil storage tanks[J]. Journal of Hazardous Materials, 2014, 278:529-538.
[12] 付强, 王超, 郭亮. 基于层次分析法的电缆燃烧性能综合指标评价体系[J]. 火灾科学, 2012, 21(4):197-202. FU Q, WANG C, GUO L. Assessment on combustion performance of cable by AHP method[J]. Fire Safety Science, 2012, 21(4):197-202.
[13] ISO 5660-1. Reaction-to-fire tests-Heat release, smoke production and mass loss rate-Part1:Heat release rate (cone calorimeter method)[S]. 2015.
[14] 舒中俊, 徐晓楠, 杨守生, 等. 基于锥形量热仪试验的聚合物材料火灾危险评价研究[J]. 高分子通报, 2006(5):37-44+78. SHU Z, XU X, YANG S, et al. Integrated assessing fire hazard of polymer based on data of cone calorimeter[J]. Chinese Polymer Bulletin, 2006(5):37-44+78.
[15] 郭子东, 岳海玲. 基于层次分析法的聚合物火灾危险性评估[J]. 中国塑料, 2006, 20(2):85-87. GUO Zidong, YUE Hailing. Fire-safety evaluation for polymers by hierarchical analysis process[J]. China Plastics, 2006, 20(2):85-87. |