[1] KNOLL M, RUSKA E. Das Elektronenmikroskop[J]. Zeitschrift für Physik, 1932, 78(5/6):318-339.
[2] VON ARDENNE M. Das elektronen-rastermikroskop[J]. Zeitschrift für Physik, 1938, 109(9/10):553-572.
[3] HAIDER M, ROSE H, UHLEMANN S, et al. A sphericalaberration-corrected 200 kV transmission electron microscope[J]. Ultramicroscopy, 1998, 75(1):53-60.
[4] KRIVANEK O L, DELLBY N, LUPINI A R. Towards sub-angstrom electron beams[J]. Ultramicroscopy, 1999, 78(1/2/3/4):1-11.
[5] WILLIAMS D B, CARTER C B. Transmission electron microscopy[M]. Boston, MA:Springer, 2009.
[6] RICHARDSON K C, JARETT L, FINKE E H. Embedding in epoxy resins for ultrathin sectioning[J]. Stain Technology, 1960, 35(6):313-323.
[7] HAYWORTH K J, KASTHURI N, SCHALEK R, et al. Automating the collection of ultrathin serial sections for large volume TEM reconstructions[J]. Microscopy and Microanalysis, 2006, 12(SUPPL. 2):86-87.
[8] 时金安, 张庆华, 谷林. 聚焦离子束制备透射电子显微镜样品的两种厚度判断方法[J]. 电子显微学报, 2017, 36(1):18-23. SHI Jin'an, ZHANG Qinghua, GU Lin. Two methods of estimating sample thickness in FIB-TEM sample fabrication[J]. Journal of Chinese Electron Microscopy Society, 2017, 36(1):18-23.
[9] GONG Y, ZHANG J, JIANG L, et al. In Situ Atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery[J]. Journal of the American Chemical Society, 2017, 139(12):4274-4277.
[10] GONG Y, CHEN Y, ZHANG Q, et al. Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery[J]. Nature Communications, 2018, 9(1):3341.
[11] MILLER M K, RUSSELL K F, THOMPSON K, et al. Review of atom probe FIB-Based specimen preparation methods[J]. Microscopy and Microanalysis, 2007, 13(6):428-436.
[12] SCHERZER O. The theoretical resolution limit of the electron microscope[J]. Journal of Applied Physics, 1949, 20(1):20-29.
[13] GU L, ZHU C, LI H, et al. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution[J]. Journal of the American Chemical Society, 2011, 133(13):4661-4663.
[14] YAMAMOTO K, IRIYAMA Y, ASAKA T, et al. Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery[J]. Angewandte Chemie-International Edition, 2010, 49(26):4414-4417.
[15] YAMAMOTO K, IRIYAMA Y, ASAKA T, et al. Direct observation of lithium-ion movement around an in-situ-formed-negative-electrode/solid-state-electrolyte interface during initial charge-discharge reaction[J]. Electrochemistry Communications, 2012, 20(1):113-116.
[16] YAMAMOTO K, IRIYAMA Y, HIRAYAMA T. Operando observations of solid-state electrochemical reactions in li-ion batteries by spatially resolved TEM EELS and electron holography[J]. Microscopy, 2017, 66(1):50-61.
[17] PIAO J Y, GU L, WEI Z, et al. Phase control on surface for the stabilization of high energy cathode materials of lithium ion batteries[J]. Journal of the American Chemical Society, 2019, 141(12):4900-4907.
[18] EGERTON R F. Electron energy-loss spectroscopy in the electron microscope[M]. Boston, MA:Springer, 2011.
[19] ZUO J M, KIM M, O'KEEFFE M, et al. Direct observation of d-orbital holes and Cu-Cu bonding in Cu2O[J]. Nature, 1999, 401(6748):49-52.
[20] CAO J, GUO C, ZOU H. Charge density measurement and bonding character in LiNiO2[J]. Journal of Solid State Chemistry, 2009, 182(3):555-559.
[21] LI Y, LI Y, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362):506-510.
[22] WANG X, ZHANG M, ALVARADO J, et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM[J]. Nano Letters, 2017, 17(12):7606-7612.
[23] ZACHMAN M J, TU Z, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718):345-349.
[24] IWATSUKI M, MUROOKA K, KITAMURA S I, et al. Scanning tunneling microscope (STM) for conventional transmission electron microscope (TEM)[J]. Journal of Electron Microscopy, 1991, 40(1):48-53.
[25] NAITOH Y, TAKAYANAGI K, TOMITORI M. Visualization of tipsurface geometry at atomic distance by TEM-STM holder[J]. Surface Science, 1996, 357/358:208-212.
[26] FRANK S. Carbon nanotube quantum resistors[J]. Science, 1998, 280(5370):1744-1746.
[27] OSHIMA Y, MOURI K, HIRAYAMA H, et al. Development of a miniature STM holder for study of electronic conductance of metal nanowires in UHV-TEM[J]. Surface Science, 2003, 531(3):209-216.
[28] HUANG J Y, ZHONG L, WANG C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode[J]. Science, 2010, 330(6010):1515-1520.
[29] WANG Z, SANTHANAGOPALAN D, ZHANG W, et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in allsolid-state batteries[J]. Nano Letters, 2016, 16(6):3760-3767.
[30] YANG Z, ZHU Z, MA J, et al. Phase separation of Li2S/S at nanoscale during electrochemical lithiation of the solid-state lithium-sulfur battery using In Situ TEM[J]. Advanced Energy Materials, 2016, 6(20):1600806.
[31] ALLARD L F, BIGELOW W C, JOSE-YACAMAN M, et al. A new MEMSbased system for ultra-high-resolution imaging at elevated temperatures[J]. Microscopy Research and Technique, 2009, 72(3):208-215.
[32] ZHANG Q, HE X, SHI J, et al. Atomic-resolution imaging of electrically induced oxygen vacancy migration and phase transformation in SrCoO2.5-σ[J]. Nature Communications, 2017, 8(1):104.
[33] NAM K W, BAK S M, HU E, et al. Combining in situ synchrotron X-Ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8):1047-1063.
[34] MIAO J, ERCIUS P, BILLINGE S J L. Atomic electron tomography:3D structures without crystals[J]. Science, 2016, 353(6306):aaf2157.
[35] VAN DYCK D, JINSCHEK J R, CHEN F R. ‘Big Bang’ tomography as a new route to atomic-resolution electron tomography[J]. Nature, 2012, 486(7402):243-246. |