1 |
YANG Z , ZHANG J , KINTNER-MEYER M C W , et al . Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
|
2 |
YUAN Z Z , YIN Y B , XIE C X , et al . Advanced materials for zinc-based flow battery: Development and challenge[J]. Advanced Materials, 2019: 10.1002/adma.201902025.
|
3 |
KE X , PRAHL J M , ALEXANDER J I D , et al . Rechargeable redox flow batteries: Flow fields, stacks and design considerations[J]. Chemical Society Reviews, 2018, 47(23): 8721-8743.
|
4 |
WANG W , LUO Q , LI B , et al . Recent progress in redox flow battery research and development[J]. Advanced Functional Materials, 2013, 23(8): 970-986.
|
5 |
SOLOVEICHIK G L . Flow batteries: Current status and trends[J]. Chemical Reviews, 2015, 115(20): 11533-11558.
|
6 |
WEI X , PAN W , DUAN W , et al . Materials and systems for organic redox flow batteries: Status and challenges[J]. ACS Energy Letters, 2017, 2(9): 2187-2204.
|
7 |
PARK M , RYU J, WANG W , et al . Material design and engineering of next-generation flow-battery technologies[J]. Nature Reviews Materials, 2016, 2(1): doi:10.1038/natrevmats.2016.80.
|
8 |
LU W , LI X , ZHANG H . The next generation vanadium flow batteries with high power density)—A perspective [J]. Physical Chemistry Chemical Physics, 2018, 20(1): 23-35.
|
9 |
STAUBER J M , ZHANG S , GVOZDIK N , et al . Cobalt and vanadium trimetaphosphate polyanions: Synthesis, characterization, and electrochemical evaluation for non-aqueous redox-flow battery applications[J]. Journal of the American Chemical Society, 2018, 140(2): 538-541.
|
10 |
HUANG Y , GU S , YAN Y , et al . Nonaqueous redox-flow batteries: Features, challenges, and prospects[J]. Current Opinion in Chemical Engineering, 2015, 8: 105-113.
|
11 |
GONG K , FANG Q , GU S , et al . Nonaqueous redox-flow batteries: Organic solvents, supporting electrolytes, and redox pairs[J]. Energy & Environmental Science, 2015, 8(12): 3515-3530.
|
12 |
MATSUDA Y , TANAKA K , OKADA M , et al . A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte[J]. Journal of Applied Electrochemistry, 1988, 18(6): 909-914.
|
13 |
CHAKRABARTI M H , DRYFE R A W , ROBERTS E P L . Evaluation of electrolytes for redox flow battery applications[J]. Electrochimica Acta, 2007, 52(5): 2189-2195.
|
14 |
SHIN S H , YUN S , MOON S . A review of current developments in non-aqueous redox flow batteries: Characterization of their membranes for design perspective[J]. RSC Advances, 2013, 3(24): 9095-9116.
|
15 |
LIU Q , SLEIGHTHOLME A E S , SHINKLE A A , et al . Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries[J]. Electrochemistry Communications, 2009, 11(12): 2312-2315.
|
16 |
LIU Q , SHINKLE A A , LI Y , et al . Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries[J]. Electrochemistry Communications, 2010, 12(11): 1634-1637.
|
17 |
SHINKLE A A , SLEIGHTHOLME A E S , GRIFFITH L D , et al . Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery[J]. Journal of Power Sources, 2012, 206: 490-496.
|
18 |
ZHANG D , LIU Q , SHI X , et al . Tetrabutylammonium hexafluorophosphate and 1-ethyl-3-methyl imidazolium hexafluorophosphate ionic liquids as supporting electrolytes for non-aqueous vanadium redox flow batteries[J]. Journal of Power Sources, 2012, 203: 201-205.
|
19 |
SLEIGHTHOLME A E S , SHINKLE A A , LIU Q , et al . Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries[J]. Journal of Power Sources, 2011, 196(13): 5742-5745.
|
20 |
ZHEN Y H , ZHANG C J , YUAN J C , et al . A high-performance all-iron non-aqueous redox flow battery[J]. Journal of Power Sources, 2020, 445, 227331. doi: 10.1016/j.jpowsour.2019.227331 .
doi: 10.1016/j.jpowsour.2019.227331
|
21 |
KIM J , KIM K J , PARK M , et al . Development of metal-based electrodes for non-aqueous redox flow batteries[J]. Electrochemistry Communications, 2011, 13(9): 997-1000.
|
22 |
YAMAMURA T , SHIOKAWA Y , YAMANA H , et al . Electrochemical investigation of uranium β-diketonates for all-uranium redox flow battery[J]. Electrochimica Acta, 2002, 48(1): 43-50.
|
23 |
ZHANG D , LAN H , LI Y . The application of a non-aqueous bis(acetylacetone)ethylenediamine cobalt electrolyte in redox flow battery[J]. Journal of Power Sources, 2012, 217: 199-203.
|
24 |
XING X , ZHANG D , LI Y . A non-aqueous all-cobalt redox flow battery using 1,10-phenanthrolinecobalt(II) hexafluorophosphate as active species[J]. Journal of Power Sources, 2015, 279: 205-209.
|
25 |
XING X , ZHAO Y , LI Y . A non-aqueous redox flow battery based on tris(1,10-phenanthroline) complexes of iron(II) and cobalt(II)[J]. Journal of Power Sources, 2015, 293: 778-783.
|
26 |
CAPPILLINO P J , PRATT H D , HUDAK N S , et al . Application of redox non-innocent ligands to non-aqueous flow battery electrolytes[J]. Advanced Energy Materials, 2014, 4(1): 1-4.
|
27 |
CABRERA P J , YANG X , SUTTIL J A , et al . Complexes containing redox noninnocent ligands for symmetric, multielectron transfer nonaqueous redox flow batteries[J]. The Journal of Physical Chemistry C, 2015, 119(28): 15882-15889.
|
28 |
LI Z , LI S , LIU S , et al . Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-tetramethyl-1-piperidinyloxy and N-methylphthalimide[J]. Electrochemical and Solid-State Letters, 2011, 14(12): A171-A173.
|
29 |
BRUSHETT F R , VAUGHEY J T , JANSEN A N . An all-organic non-aqueous lithium-ion redox flow battery[J]. Advanced Energy Materials, 2012, 2(11): 1390-1396.
|
30 |
WEI X , XU W , HUANG J , et al . Radical compatibility with nonaqueous electrolytes and its impact on an all-organic redox flow battery[J]. Angewandte Chemie, 2015, 127(30): 8808-8811.
|
31 |
WEI X , DUAN W , HUANG J , et al . A high-current, stable nonaqueous organic redox flow battery[J]. ACS Energy Letters, 2016, 1(4): 705-711.
|
32 |
DUAN W , HUANG J , KOWALSKI J A , et al . “Wine-Dark Sea” in an organic flow battery: Storing negative charge in 2,1,3-benzothiadiazole radicals leads to improved cyclability[J]. ACS Energy Letters, 2017, 2(5): 1156-1161.
|
33 |
YUAN J , ZHANG C , ZHEN Y , et al . Enhancing the performance of an all-organic non-aqueous redox flow battery[J]. Journal of Power Sources, 2019, 443: doi: https://doi.org/10.1016/j.jpowsour.2019.227283.
|
34 |
KAUR A P , HOLUBOWITCH N E , ERGUN S , et al . A highly soluble organic catholyte for non-aqueous redox flow batteries[J]. Energy Technology, 2015, 3(5): 476-480.
|
35 |
DUAN W , VEMURI R S , MILSHTEIN J D , et al . A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR[J]. Journal of Materials Chemistry A, 2016, 4(15): 5448-5456.
|
36 |
XING X , HUO Y , WANG X , et al . A benzophenone-based anolyte for high energy density all-organic redox flow battery[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17488-17494.
|
37 |
XING X , LIU Q , XU W , et al . All-liquid electroactive materials for high energy density organic flow battery[J]. ACS Applied Energy Materials, 2019, 2(4): 2364-2369.
|
38 |
WINSBERG J , HAGEMANN T , MUENCH S , et al . Poly(boron-dipyrromethene)—A redox-active polymer class for polymer redox-flow batteries[J]. Chemistry of Materials, 2016, 28(10): 3401-3405.
|
39 |
BARAN M J , BRATEN M N , MONTOTO E C , et al . Designing redox-active oligomers for crossover-free, nonaqueous redox-flow batteries with high volumetric energy density[J]. Chemistry of Materials, 2018, 30(11): 3861-3866.
|
40 |
WANG W , XU W , COSIMBESCU L , et al . Anthraquinone with tailored structure for a nonaqueous metal-organic redox flow battery[J]. Chemical Communications, 2012, 48(53): 6669-6671.
|
41 |
WEI X , XU W , VIJAYAKUMAR M , et al . TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries[J]. Advanced Materials, 2014, 26(45): 7649-7653.
|
42 |
WEI X , COSIMBESCU L , XU W , et al . Towards high-performance nonaqueous redox flow electrolyte via ionic modification of active species[J]. Advanced Energy Materials, 2015, 5(1):doi: https://doi.org/10.1002/aenm.201400678.
|