储能科学与技术 ›› 2020, Vol. 9 ›› Issue (3): 797-806.doi: 10.19799/j.cnki.2095-4239.2019.0251
收稿日期:
2019-11-05
修回日期:
2020-01-06
出版日期:
2020-05-05
发布日期:
2020-05-11
作者简介:
侯朝霞(1971—),女,教授,研究方向为纳米功能材料,E-mail:基金资助:
HOU Zhaoxia(), WANG Xiaohui, QU Chenying, WANG Jian
Received:
2019-11-05
Revised:
2020-01-06
Online:
2020-05-05
Published:
2020-05-11
摘要:
MnO2作为典型的超级电容器赝电容材料具有成本低、比电容高等优点,但其导电性能差、工作过程中结构不稳定等缺点严重影响其电化学性能。目前,将MnO2与其它材料复合制备二元复合材料是改善其电化学性能的有效手段之一。本文综述了基于超级电容器的MnO2与双电层、MnO2与赝电容二元复合材料国内外的研究进展,对比分析了MnO2二元复合材料的电化学性能。综合分析表明,MnO2与赝电容电极材料复合能够通过协同作用,进一步提高复合材料电化学性能;“核-壳”异质结构可以起到缓冲与支撑作用,增加复合材料的结构稳定性。因此,构建“核-壳”结构的MnO2与赝电容复合电极材料会成为今后的研究热点。
中图分类号:
侯朝霞, 王晓慧, 屈晨滢, 王健. 基于超级电容器的MnO2 二元复合材料研究进展[J]. 储能科学与技术, 2020, 9(3): 797-806.
HOU Zhaoxia, WANG Xiaohui, QU Chenying, WANG Jian. Research progress of MnO2 binary composites based on supercapacitors[J]. Energy Storage Science and Technology, 2020, 9(3): 797-806.
1 | ZHANG Q Z , ZANG D , MIAO Z C , et al . Research progress in MnO2-Carbon based supercapacitor electrode materials[J]. Small, 2018, 14(24):1702883-1702898. |
2 | AN K H , KIM W S , PARK Y S , et al . Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes[J]. Advanced Functional Materials, 2001, 11(5): 387-392. |
3 | 刘福海, 康春萍, 李中桥, 等 . 二氧化锰作为超级电容器电极材料的研究进展[J]. 东莞理工学院学报, 2016, 23(1): 42-44. |
LIU F H , KANG C P , LI Z Q , et al . Research progress of MnO2 as electrode materials used in supercapacitors[J]. Journal of Dongguan Institute of Technology, 2016, 23(1): 42-44. | |
4 | 李伟, 侯朝霞, 李建君, 等 . 基于二氧化锰/石墨烯复合材料的制备方法及在超级电容器上的研究进展[J]. 储能科学与技术, 2019, 8(2): 248-258. |
LI W , HOU Z X , LI J J , et al . Preparation methods and progress of manganese dioxide/graphene based composites in supercapacitors[J]. Energy Storage Science and Technology, 2019, 8(2): 248-258. | |
5 | 王建淦 . 纳米二氧化锰基复合材料的制备及其电化学特性研究[D]. 北京: 清华大学, 2013. |
WANG J G . Preparation of nanostructure manganese dioxide-based composites and their electrochemical properties[D]. Beijing: Tsinghua University, 2013. | |
6 | LU Q , CHEN J G , XIAO J Q . Nanostructured electrodes for high-performance pseudocapacitors[J]. Angewandte Chemie International Edition, 2013, 52(7): 1882-1889. |
7 | 张熊, 孙现众, 马衍伟 . 高比能超级电容器的研究进展[J]. 中国科学: 化学, 2014, 44(7): 1081-1096. |
ZHANG X , SUN X Z , MA Y W , et al . Research progress of high specific energy supercapacitors[J]. Scientia Sinica(Chimica), 2014, 44(7): 1081-1096. | |
8 | 曹迪, 文浩, 罗斌, 等 . 超级电容器电极材料的研究进展[J]. 机电工程技术, 2019, 48(5): 224-227. |
CAO D , WEN H , LUO B , et al . Research progress of supercapacitor electrode materials[J]. Mechanical & Electrical Engineering Technology, 2019, 48(5): 224-227. | |
9 | CHEN L F , LU L , YU L , et al . Designed formation of hollow particle-based gen-doped carbon nanofibers for high-performance supercapacitors[J]. Energy & Environmental Science, 2017, 10(8): 1777-1783. |
10 | KHALID S , CAO C , NAVEED M , et al . 3D hierarchical MnO2 microspheres: A prospective material for high performance supercapacitor and lithium-ion batteries[J]. Sustainable Energy & Fuels, 2017, 1(8): 1795-1804. |
11 | ZHAO S , LIU T , HOU D , et al . Controlled synthesis of hierarchical birnessite-type MnO2 nanoflowers for supercapacitor applications[J]. Applied Surface Science, 2015, 356: 259-265. |
12 | YIN B , ZHANG S , JIAO Y , et al . Facile synthesis of ultralong MnO2 nanowires as high performance supercapacitor electrodes and photocatalysts with enhanced photocatalytic activities[J]. Cryst. Eng. Comm., 2014, 16(43): 9999-10005. |
13 | JIA H , CAI Y , ZHENG X , et al . Mesostructured carbon nanotube-on-MnO2 nanosheet composite for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 38963-38969. |
14 | SHIVAKUMARA S , MUNICHANDRAIAH N . In-situ preparation of nanostructured α-MnO2/polypyrrole hybrid composite electrode materials for high performance supercapacitors[J]. Journal of Alloys and Compounds, 2019, 787: 1044-1050. |
15 | 杨金林, 林金鑫, 郭绍义 . NiO/MnO2分级纳米片阵列复合材料的制备与超电容性能[J]. 无机化学学报, 2017, 33(2): 255-261. |
YANG J L , LIN J X , GUO S Y . Preparation and supercapacitance performances of hierarchical NiO/MnO2 nanosheet array[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(2): 255-261. | |
16 | JIN L L , MENG Y , TONG X L , et al . Facile synthesis of Co3O4@MnO2 core-shell nanocomposites for high-performance supercapacitor[J]. Materials Letters, 2017, 197: 127-130. |
17 | YANGLIKCI S , GOKCE Y , YAGMUR E , et al . The performance of sulphur doped activated carbon supercapacitors prepared from waste tea[J]. Environmental Technology, 2019, 3: 1-31. |
18 | CHEN C , FAN W , ZHANG Q , et al . One-step hydrothermal synthesis of nitrogen and sulfur co-doped grapheme for supercapacitors with high electrochemical capacitance performance[J]. Ionics, 2015, 21(12): 3233-3238. |
19 | REIT R , NGUYEN J , READY W J , et al . Growth time performance dependence of vertically aligned carbon nanotube supercapacitors grown on aluminum substrates[J]. Electrochimica Acta, 2013, 91: 96-100. |
20 | HULICOVA D , YAMASHITA J , SONEDA Y , et al . Supercapacitors prepared from melamine-based carbon[J]. Chemistry Materials, 2005, 17(5): 1241-1247. |
21 | PANDOLFO A G , HOLLENKAMP A F . Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157(1): 11-27. |
22 | WANG G , ZHANG L , ZANG J . A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828. |
23 | YAN J , WANG Q , WEI T , et al . Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4): 1300816-1300859. |
24 | YANG W , RATINAC K R , RINGER S P , et al . Carbon nanomaterials in biosensors: Should you use nanotubes or graphene[J]. Angewandte Chemie (International Edition), 2010, 49(12): 2114-2138. |
25 | HANG M , HUANG F , DONG Y , et al . MnO2-based nanostructures for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(43): 21380-21423. |
26 | LI G X , HOU P X , LUAN J , et al . A MnO2 nanosheet/single-wall carbon nanotube hybrid fiber for wearable solid-state supercapacitors[J]. Carbon, 2018, 140: 634-643. |
27 | YAN J , FAN Z , WEI T , et al . Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities[J]. Journal of Power Sources, 2016, 194(2): 1202-1207. |
28 | YAGLIKCI S , GOKCE Y , YAGMU R , et al . The performance of sulphur doped activated carbon supercapacitors prepared from waste tea[J]. Environmental Technology, 2019, 3: 1-31. |
29 | 李祥, 郑峰, 罗援, 等 . 超级电容器活性炭/MnO2复合电极材料的制备及性能[J]. 材料导报, 2018, 32(12): 1949-1954. |
LI X , ZHENG F , LUO Y , et al . Preparation of activated carbon/MnO2 composite electrode materials and its electrochemical performance[J]. Materials Reports, 2018, 32 (12): 1949-1954. | |
30 | 王福华, 茆志友, 姚秋实, 等 . 活性炭/二氧化锰纳米复合材料的合成及超级电容性能[J]. 应用化工, 2015, 44(5): 785-788+793. |
WANG F H , MAO Z Y , YAO Q S , et al . Synthesis and supercapacitor performance of activated carbon/MnO2 composites[J]. Applied Chemical Industry, 2015, 44(5): 785-788+793. | |
31 | HORN M , GUPTA B , MACLEOD J , et al . Graphene-based supercapacitor electrodes: Addressing challenges in mechanisms and materials[J]. Current Opinion in Green and Sustainable Chemistry, 2019, 17: 42-48. |
32 | QIU S , LI R , HUANG Z , et al . Scalable sonochemical synthesis of petal-like MnO2/graphene hierarchical composites for high-performance supercapacitors[J]. Composites Part B: Engineering, 2019, 161: 37-43. |
33 | XIONG C , LI T , ZHAO T , et al . Three-dimensional graphene/MnO2 nanowalls hybrid for high-efficiency electrochemical supercapacitors[J]. Nano, 2018, 13(1): 1850013-1850021. |
34 | SUA H B, GU H Z , CHEN Y , et al . Preparation and electrochemical properties of graphene/MnO2 nanocomposites for supercapacitors[J]. Key Engineering Materials, 2018, 768: 102-108. |
35 | 陈翔, 燕绍九, 南文争, 等 . 石墨烯负载花球状二氧化锰复合材料制备及其电容性能研究[J]. 材料工程, 2019, 47(1): 18-24. |
CHEN X , YAN S J , NAN W Z, et al . Synthesis and capacitive performance of globular MnO2 flowers anchored graphene composites[J]. Journal of Materials Engineering, 2019, 47(1): 18-24. | |
36 | 孙银, 黄乃宝, 王东超, 等 . 赝电容型超级电容器电极材料研究进展[J]. 电源技术, 2018, 42(5): 747-750. |
SUN Y , HUANG N Y , WNAG D C , et al . Research progress on electrode materials for pseudocapacitive supercapacitors[J]. Chinese Journal of Power Sources, 2018, 42(5): 747-750. | |
37 | 王洁, 张燕薇, 吴冰, 等 . PANI/Ni0.2Zn0.8Fe2O4复合材料的制备及其性能[J]. 化工设计通讯, 2018, 45(8): 133-135. |
WANG J , ZHANG Y W , WU B , et al . Preparation and properties of PANI/Ni0.2Zn0.8Fe2O4 composites[J]. Chemical Engineering Design Communications, 2018, 45(8): 133-135. | |
38 | 刘琴, 程存喜, 吴平平 . PANI/MnO2电极的制备及其在超级电容器中的应用[J]. 广州化工, 2017, 45(16): 69-71. |
LIU Q , CHENG C X , WU P P , et al . Preparation of PANI/MnO2 electrode and its application in supercapacitors[J]. Guangzhou Chemical Industry, 2017, 45(16): 69-71. | |
39 | RELEKAR B P , FULARI A V , LOHAR G M , et al . Development of porous manganese oxide/polyaniline composite using electrochemical route for electrochemical supercapacitors[J]. Journal of Electronic Materials, 2019, 48: 2449-2455. |
40 | ZHAO Y , WANG C A . Nano-network MnO2/polyaniline composites with enhanced electrochemical properties for supercapacitors[J]. Materials & Design, 2018, 97: 512-518. |
41 | 杨友, 杨宇青, 王国平 . 微乳法制备高导电性α-MnO2/聚苯胺复合物[J]. 山东化工, 2018, 47(19): 12-15. |
YANG Y , YANG Y Q , WANG G P . Preparation of highly conductive α-MnO2/polyaniline composite by microemulsion method[J]. Shandong Chemical Industry, 2018, 47(19): 12-15. | |
42 | 陈贵靖, 邱孝涛, 邱宇涵, 等 . 电化学沉积制备氧化石墨烯/聚吡咯复合材料及其用于超级电容器的研究[J]. 化学研究与应用, 2019, 31(1): 101-106. |
CHEN G J , QIU S T , QIU Y H , et al . Study on the preparation of graphene oxide/polypyrrole composite for supercapacitor application by electrochemical deposition[J]. Chemical Research and Application, 2019, 31(1): 101-106. | |
43 | 梁芳楠, 刘志伟, 张宁, 等 . 细乳液法制备MnO2/PPy复合材料及其电化学性能[J]. 化工进展, 2019, 38(2): 979-986. |
LIANG F N , LIU Z W , ZHANG N , et al . Synthesis of MnO2/PPy composite materials by miniemulsion polymerization and its electrochemical performances[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 979-986. | |
44 | 李倩, 符婉琛, 张存社, 等 . 聚吡咯/二氧化锰复合材料的制备及其电化学性能研究[J]. 应用化工, 2019, 48(5): 995-1000. |
LI Q , FU W C , ZHANG C S , et al . Preparation and electrochemical properties of polypyrrole/manganese dioxide composites[J]. Applied Chemical Industry, 2019, 48(5): 995-1000. | |
45 | 陈圆, 张龙, 李利亚, 等 . 聚吡咯纳米球负载二氧化锰纳米片的制备及电化学性能研究[J]. 化学研究与应用, 2017, 29(12): 1904-1908. |
CHEN Y , ZHANG L , LI L Y , et al . Synthesis and electrochemical performance studies of MnO2 nanosheets on polypyrrole nanospheres[J]. Chemical Research and Application, 2017, 29(12): 1904-1908. | |
46 | LI Y , ZHOU M , GONG Q , et al . Polythiophene grafted onto single-wall carbon-nanotubes via oligo(ethylene oxide) linkages for supercapacitor devices with enhanced electrochemical performance[J]. ChemElectroChem, 2019, 6(17): 4595-4607. |
47 | LU Q , ZHOU Y . Synthesis of mesoporous polythiophene/MnO2 nanocomposite and its enhanced pseudocapacitive properties[J]. Journal of Power Sources, 2011, 196(8): 4088-4094. |
48 | 陈思 . 氧化镍基复合材料的微波法制备及其在超级电容器中的应用[D]. 太原: 太原理工大学, 2019. |
CHEN S . Microwave preparation of nickel oxide matrix composites for supercapacitors[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
49 | RACIK K M , GURUPRASAD K , MAHENDIRAN M , et al . Enhanced electrochemical performance of MnO2/NiO nanocomposite for supercapacitor electrode with excellent cycling stability[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(5): 5222-5232. |
50 | 翁洁, 魏咪咪, 王夺 . 柚皮活性炭/纳米Fe2O3的制备及其在超级电容器中的应用[J]. 厦门大学学报, 2019, 58(5): 678-684. |
WENG J , WEI M M , WANG D . Preparation of pomelo peel activated carbon/nano Fe2O3 and its application in supercapacitor[J]. Journal of Xiamen University, 2019, 58(5): 678-684. | |
51 | ZHU L , CHANG Z , WANG Y , et al . Core-shell MnO2@Fe2O3 nanospindles as a positive electrode for aqueous supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(44): 22066-22072. |
52 | 李济莘, 胡亚鹏, 赵晓丹, 等 . Co3O4超级电容器电极材料的制备及电化学性能研究[J]. 高师理科学刊, 2019, 39(8): 48-53. |
LI J X , HU Y P , ZHAO X D , et al . Study on preparation and electrochemical properties of Co3O4 supercapacitor electrode materials[J]. Journal of Science of Teachers' College and University, 2019, 39(8): 48-53. | |
53 | WANG K , SHI Z , WANG Y , et al . Co3O4 nanowires@MnO2 nanolayer or nanoflakes core-shell arrays for high-performance supercapacitors: The influence of morphology on performance[J]. Journal of Alloys and Compounds, 2015, 624: 85-93. |
54 | CHE H , LYU Y, LIU A , et al . Facile synthesis of three dimensional flower-like Co3O4@MnO2 core-shell microspheres as high-performance electrode materials for supercapacitors[J]. Ceramics International, 2017, 43(8): 6054-6062. |
[1] | 王宇作, 卢颖莉, 邓苗, 杨斌, 于学文, 荆葛, 阮殿波. 超级电容器自放电的研究进展[J]. 储能科学与技术, 2022, 11(7): 2114-2125. |
[2] | 林楠, KREWER Ulrike, ZAUSCH Jochen, STEINER Konrad, 林海波, 冯守华. 电化学能量储存和转换体系多物理场模型的建立及其应用[J]. 储能科学与技术, 2022, 11(4): 1149-1164. |
[3] | 郭铁柱, 周迪, 张传芳. MXenes胶体氧化的调控策略及其对超级电容器性能的影响[J]. 储能科学与技术, 2022, 11(4): 1165-1174. |
[4] | 佟永丽, 武祥. 金属有机框架衍生的Co3O4 电极材料及其电化学性能[J]. 储能科学与技术, 2022, 11(3): 1035-1043. |
[5] | 岳博文, 佟佳欢, 刘玉文, 霍锋. 离子液体电解液的模拟计算方法及应用[J]. 储能科学与技术, 2022, 11(3): 897-911. |
[6] | 郭云琪, 盛楠, 朱春宇, 饶中浩. 基于模板法制备氧化铝纤维及其石蜡复合相变材料热性能[J]. 储能科学与技术, 2022, 11(2): 511-520. |
[7] | 韩雪, 邓伟, 周旭峰, 刘兆平. 石墨烯在储能领域应用的专利分析[J]. 储能科学与技术, 2022, 11(1): 335-349. |
[8] | 乔亮波, 张晓虎, 孙现众, 张熊, 马衍伟. 电池-超级电容器混合储能系统研究进展[J]. 储能科学与技术, 2022, 11(1): 98-106. |
[9] | 张博雅, 刘柏鸿, 黎远航, 刘欣, 陈乾风, 侯三英. 二元氧化物修饰催化剂的制备及其自增湿性能[J]. 储能科学与技术, 2021, 10(6): 2013-2019. |
[10] | 刘大进, 吴强, 何仁杰, 余创, 谢佳, 程时杰. 生物高分子在锂离子电池硅负极中的研究进展[J]. 储能科学与技术, 2021, 10(6): 2156-2168. |
[11] | 宋文兵, 鹿院卫, 陈晓彤, 何聪, 樊占胜, 吴玉庭. 氯化盐/陶瓷定形复合相变材料的制备和热物性研究[J]. 储能科学与技术, 2021, 10(5): 1720-1728. |
[12] | 毕志杰, 赵宁, 郭向欣. 基于氧化钨和普鲁士蓝的可变色超级电容器[J]. 储能科学与技术, 2021, 10(3): 952-957. |
[13] | 王凯, 侯朝霞, 李思瑶, 屈晨滢, 王悦, 孔佑健. 可拉伸全固态超级电容器的研究进展[J]. 储能科学与技术, 2021, 10(3): 887-895. |
[14] | 陈帅, 陈灵, 江浩. 氮掺杂无定形氧化钒纳米片阵列用于快充型准固态超级电容器[J]. 储能科学与技术, 2021, 10(3): 945-951. |
[15] | 李向东, 廉睿, 吴佳美, 唐良辉, 乔志军, 阮殿波. 基于Fluent的超级电容器模组充放电循环的热仿真分析[J]. 储能科学与技术, 2021, 10(2): 732-737. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||