1 |
RUI X, YAN Q, SKYLLAS-KAZACOS M, et al. Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review[J]. J. Power Sources, 2014, 258: 19-38.
|
2 |
TAN H, XU L, GENG H, et al. Nanostructured Li3V2(PO4)3 cathodes[J]. Small, 2018, 14(21): doi: 10.1002/smll.201800567.
|
3 |
CHEN D, TAN H, RUI X, et al. Oxyvanite V3O5: A new intercalation-type anode for lithium-ion battery [J]. InfoMat., 2019, 1: 251-259.
|
4 |
龙宣有, 王捷, 赵丽娜, 等. 络合剂对铁基普鲁士蓝结构及储钠性能的影响[J]. 储能科学与技术, 2020, 9(1): 57-64.
|
|
LONG Xuanyou, WANG Jie, ZHAO Lina, et al. Effect of chelating agent on crystal structure and sodium storage performance of Fe-based Prussian blue[J]. Energy Storage Science and Technology, 2020, 9(1): 57-64.
|
5 |
倪乔, 吴川, 白莹, 等. 具有(113)优势晶面的钠离子电池正极材料Na3V2(PO4)3/C[J]. 储能科学与技术, 2016, 5(3): 341-348.
|
|
NI Qiao, WU Chuan, BAI Ying, et al. Na3V2(PO4)3/C cathode materials with preferred (113) orientation for sodium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 341-348.
|
6 |
穆林沁, 戚兴国, 胡勇胜, 等. 新型O3-NaCul/9Ni2/9Fel/3Mnl/3O2钠离子电池正极材料研究[J]. 储能科学与技术, 2016, 5(3): 324-328.
|
|
MU Linqin, QI Xinguo, HU Yongsheng, et al. Electrochemical properties of novel O3-NaCul/9Ni2/9Fel/3Mnl/3O2 as cathode material for sodium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 324-328.
|
7 |
ZHANG X, YANG D, RUI X, et al. Advanced cathodes for potassium-ion battery[J]. Curr. Opin. Electrochem., 2019, 18: 24-30.
|
8 |
TAN H, FENG Y, RUI X, et al. Metal chalcogenides: Paving the way for high-performance sodium/potassium-ion batteries[J]. Small Methods, 2020, 4(1): doi: 10.1002/smtd.201900563.
|
9 |
ZHANG X, XIAO N, KUANG X, et al. Hybrid cathodes composed of K3V2(PO4)3 and carbon materials with boosted charge transfer for K-ion batteries[J]. Surfaces., 2020, 3: 1-10.
|
10 |
YANG D, LIU C, RUI X, et al. Embracing high performance potassium-ion batteries with phosphorus-based electrodes: A review[J]. Nanoscale, 2019, 11(33): 15402-15417.
|
11 |
CHEN D, RUI X, YU Y, et al. Persistent zinc-ion storage in mass-produced V2O5 architectures[J]. Nano Energy, 2019, 60: 171-178.
|
12 |
CHEN S, WU C, SHEN L, et al. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries[J]. Adv. Mater., 2017, 29(48): doi: 10.1002/adma.201700431.
|
13 |
ZHANG X, RUI X, CHEN D, et al. Na3V2(PO4)3: An advanced cathode for sodium-ion batteries[J]. Nanoscale, 2019, 11(6): 2556-2576.
|
14 |
TAN H, CHEN D, RUI X, et al. Peering into alloy anodes for sodium-ion batteries: Current trends, challenges, and opportunities[J]. Adv. Funct. Mater., 2019, 29(14): doi: 10.1002/adfm.201908745.
|
15 |
LI Y, ZHANG J, YANG F, et al. Morphology and surface properties of LiVOPO4: A first principles study[J]. Phys. Chem. Chem. Phys., 2014, 16(44): 24604-24609.
|
16 |
LING C, ZHANG R, MIZUNO F. Phase stability and its impact on the electrochemical performance of VOPO4 and LiVOPO4[J]. J. Mater. Chem. A, 2014, 2(31): 12330-12339.
|
17 |
DING Y L, WEN Y, WU C, et al. 3D V6O13 nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries[J]. Nano Lett., 2015, 15(2): 1388-1394.
|
18 |
CHEN Z, CHEN Q, WANG H, et al. A β-VOPO4/ε-VOPO4 composite Li-ion battery cathode[J]. Electrochem. Commun., 2014, 46: 67-70.
|
19 |
CHEN Z H, MA Y Z, MA P C, et al. Synthesis and characterization of epsilon -VOPO4 nanosheets for secondary lithium-ion battery cathode[J]. T. Nonferr. Metal. Soc., 2017, 27(2): 377-381.
|
20 |
AZMI B M, ISHIHARA T, NISHIGUCHI H, et al. Vanadyl phosphates of VOPO4 as a cathode of Li-ion rechargeable batteries[J]. J. Power Sources, 2003, 119(6): 273-277.
|
21 |
HE G, KAN W H, MANTHIRAM A. A 3.4 V layered VOPO4 Cathode for Na-ion batteries[J]. Chem. Mater., 2016, 28(2): 682-688.
|
22 |
PENG L, ZHU Y, PENG X, et al. Effective interlayer engineering of two-dimensional VOPO4 nanosheets via controlled organic intercalation for improving alkali ion storage[J]. Nano Lett., 2017, 17(10): 6273-6279.
|
23 |
SHI H Y, SONG Y, QIN Z, et al. Inhibiting VOPO4·xH2O decomposition and dissolution in rechargeable aqueous zinc batteries to promote voltage and capacity stabilities[J]. Angew. Chem., 2019, 58(45): 16057-16061.
|
24 |
VERMA V, KUMAR S, MANALASTAS J R, et al. Layered VOPO4 as a cathode material for rechargeable zinc-ion battery: Effect of polypyrrole intercalation in the host and water concentration in the electrolyte[J]. ACS Appl. Energy Mater., 2019, 2(12): 8667-8674.
|
25 |
JOOEUN H, JONGWOOK W H, MUNSEOK S C, et al. Electrochemical exchange reaction mechanism and role of additive water to stabilize structure of VOPO4·2H2O as a cathode material for potassium-ion batteries[J]. Chemsuschem, 2019, 12(5): 1069-1075.
|
26 |
ZHOU L, LIU Q, ZHANG Z, et al. Interlayer-spacing-regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries[J]. Adv. Mater., 2018, 30(32): doi: 10.1002/adma.201801984.
|
27 |
HE Y, YANG X, BAI Y, et al. Vanadyl phosphate/reduced graphene oxide nanosheet hybrid material and its capacitance[J]. Electrochim. Acta, 2015, 178: 312-320.
|
28 |
ZHU Y, PENG L, CHEN D, et al. Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: Toward high-rate alkali-ion-based electrochemical energy storage[J]. Nano Lett., 2015, 16(10): 742-747.
|
29 |
RUI X, SUN W, WU C, et al. An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network[J]. Adv. Mater., 2015, 27(42): 6670-6676.
|
30 |
YANG L, LIAO H, TIAN Y, et al. Rod-like Sb2MoO6: Structure evolution and sodium storage for sodium-ion batteries[J]. Small Methods, 2019, 3(5): doi: 10.1002/smtd.201800533.
|