储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1505-1516.doi: 10.19799/j.cnki.2095-4239.2020.0111
李首顶1(), 李艳2, 田杰2, 赵宇明2, 杨敏1, 罗俊3, 曹元成1(), 程时杰1
收稿日期:
2020-03-23
修回日期:
2020-04-15
出版日期:
2020-09-05
发布日期:
2020-09-08
通讯作者:
曹元成
E-mail:lsd0801827@163.com;yccao@hust.edu.cn
作者简介:
李首顶(1989—),男,硕士,主要研究方向为储能锂电池安全技术,E-mail:Shouding LI1(), Yan LI2, Jie TIAN2, Yuming ZHAO2, Min YANG1, Jun LUO3, Yuancheng CAO1(), Shijie CHENG1
Received:
2020-03-23
Revised:
2020-04-15
Online:
2020-09-05
Published:
2020-09-08
Contact:
Yuancheng CAO
E-mail:lsd0801827@163.com;yccao@hust.edu.cn
摘要:
锂离子电池储能技术是储能领域最具应用前景的技术之一,但安全问题一直是其大规模推广应用所面临的主要挑战。本文对锂离子电池电力储能系统消防安全研究的最新进展进行了概括,从锂离子电池火灾特性、灭火剂适用性、消防装备匹配性和技术规范等方面分析了目前电力储能系统消防安全现状。通过比较电力储能系统与电动汽车安全性、电气火灾与锂离子电池火灾的区别与联系,系统性地阐述了目前锂离子电池储能消防技术的不足与缺陷,并指出预制舱式储能在消防安全设计方面可能的技术途径。最后,对锂离子电池储能消防安全系统的技术需求与发展方向进行了展望。
中图分类号:
李首顶, 李艳, 田杰, 赵宇明, 杨敏, 罗俊, 曹元成, 程时杰. 锂离子电池电力储能系统消防安全现状分析[J]. 储能科学与技术, 2020, 9(5): 1505-1516.
Shouding LI, Yan LI, Jie TIAN, Yuming ZHAO, Min YANG, Jun LUO, Yuancheng CAO, Shijie CHENG. Current status and emerging trends in the safety of Li-ion battery energy storage for power grid applications[J]. Energy Storage Science and Technology, 2020, 9(5): 1505-1516.
1 | ALBERTUS P, MANSER J S, LITZELMAN S. Long-duration electricity storage applications, economics, and technologies[J]. Joule, 2020, 4(1): 21-32. |
2 | 吴盛军, 徐青山, 袁晓冬, 等. 规模化储能技术在电力系统中的需求与应用分析[J]. 电气工程学报, 2019, 12(8): 10-15. |
WU S J, XU Q S, YUAN X D, et al. An analysis of requirements and applications of grid-scale energy storage technology in power system[J]. Journal of Electrical Engineering, 2019, 12(8): 10-15. | |
3 | OFAK Z, ZUPAN A, PLAVSIC T. Transmission grid connection of energy storage facilities-overview and challenges[J]. Tehnicki Vjesnik-Technical Gazette, 2019, 26(3): 862-871. |
4 | 牛哲文, 郭采珊, 唐文虎, 等. “互联网+智慧能源”的技术特征与发展路径[J]. 电力大数据, 2019, 22(5): 6-10. |
NIU Z W, GUO C S, TANG W H, et al. Technical features and development path of "Internet + Smart energy"[J]. Power Systems and Big Data, 2019, 22(5): 6-10. | |
5 | KIM T, SONG W, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964. |
6 | 韩平军, 程远燊, 张昉,等. 移动储能系统的应用研究[J]. 科技创新导报, 2018, 15(34): 110-111. |
HAN P J, CHENG Y S, ZHANG F, et al. Application research of mobile energy storage system[J]. Science and Technology Innovation Herald, 2018, 15(34): 110-111. | |
7 | FANG Z M, LYU W, LI X L, et al. A multi-grid evacuation model considering the threat of fire to human life and its application to building fire risk assessment[J]. Fire Technology, 2019, 55(6): 2005-2026. |
8 | JIANG F W, LIUK, WANG Z R, et al. Theoretical analysis of lithium-ion battery failure characteristics under different states of charge[J]. Fire & Materials, 2018, 42(6): 680-686. |
9 | 黄沛丰. 锂离子电池火灾危险性及热失控临界条件研究[D]. 合肥: 中国科学技术大学, 2018. |
HUANG P F. Lithium-ion battery fire hazard and thermal runaway critical conditions[D]. Hefei: University of Science and Technology of China, 2018. | |
10 | FENG X, FANG M, HE X, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301. |
11 | WANG Q, MAO B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. |
12 | ZHAO L, WATANABE I, DOI T, et al. TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries[J]. Journal of Power Sources, 2006, 161(2): 1275-1280. |
13 | FENG X, SUN J, OUYANG M, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275:261-273. |
14 | MAO B, CHEN H, CUI Z, et al. Failure mechanism of the lithium ion battery during nail penetration[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1103-1115. |
15 | GREGORY G, GRUGEON S, ESHETU G, et al. Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis[J]. Electrochimica Acta, 2012, 83: 402-409. |
16 | 游峰, 钱艳婷, 梁嘉. MW级集装箱式电池储能系统研究[J]. 电源技术, 2017, 41(11): 151-153. |
YOU F, QIAN Y T, LIANG J. Research on MW level containerized battery energy storage system[J]. Chinese Journal of Power Sources, 2017, 41(11): 151-153. | |
17 | 张子峰, 王林, 陈东红等. 集装箱储能系统散热及抗震性研究[J]. 储能科学与技术, 2013, 2(6): 642-648. |
ZHANG Z F, WANG L, CHEN D H, et al. Cooling and aseismicity study of the containerized energy storage systems[J]. Energy Storage Science and Technology, 2013, 2(6): 642-648. | |
18 | 丁庆成. 锂离子电池储能系统设计及应用研究[D]. 天津: 天津大学, 2016. |
DING Q C. Lithium-ion battery energy storage system design and application research[D]. Tianjin: Tianjin University, 2016. | |
19 | 朱运征, 李志强, 王浩, 等. 集装箱式储能系统用梯次利用锂电池组的一致性管理研究[J]. 电源学报, 2018, 16(4): 80-86. |
ZHU Y Z, LI Z Q, WANG H, et al. Research on consistency management of echelon use of Li-ion battery pack for container-type energy storage system[J]. Journal of Power Supply, 2018, 16(4): 80-86. | |
20 | 杨艺云, 张阁, 葛攀, 等. 高适用性集装箱储能系统技术研究[J]. 广西电力, 2015, 38(6): 10-14. |
YANG Y Y, ZHANG G, GE P, et al. Study on container energy storage system with high applicability[J]. Guangxi Electric Power, 2015, 38(6): 10-14. | |
21 | ROCABERT J, CAPO-MISUT R, MUNOZ-AGUILAR R S, et al. Control of energy storage system integrating electrochemical batteries and supercapacitors for grid-connected applications[J]. IEEE Transactions on Industry Applications, 2019, 55(2): 1853-1862. |
22 | KONG L, LI C, JIANG J, et al. Li-ion battery fire hazards and safety strategies[J]. Energies, 2018, 11(9): 2191-2201. |
23 | CHEN M, OUYANG D, LIU J, et al. Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package[J]. Applied Thermal Engineering, 2019, 157: 113750-113760. |
24 | 余建荣, 康克上. 锂离子电池火灾分析及火灾扑救对策研究[J]. 化学工程与装备, 2017(6): 283-284. |
YU J R, KANG K S. Lithium ion battery fire analysis and fire suppression strategy research[J]. Chemical Engineering and Equipment, 2017(6): 283-284. | |
25 | MA C T. System planning of grid-connected electric vehicle charging stations and key technologies: A review[J]. Energies, 2019, 12(21): 4201-4223 |
26 | 吴育欣. IEC 储能系统用锂电池安全标准[J]. 发展工业材料, 2018(7): 151-155. |
WU Y X. IEC safety standards for lithium batteries in energy storage systems[J]. Development of Industrial Materials, 2018(7): 151-155. | |
27 | MENG L, ZAFAR J, KHADEM S K, et al. Fast frequency response from energy storage systems–A review of grid standards, projects and technical issues[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1566-1581. |
28 | Jointcanada-United States National Standard. Standard for safety ansi/can/ul-1973: Batteries foruse in stationary, vehicle auxiliary power and light electric rail(LER) applications[S]. 2018. |
29 | 国家能源局. 电化学储能电站用锂离子电池技术规范: NB/T 420912016[S].北京, 2016. |
National Energy Administration. Technical specification for lithium ion batteries of electrochemical energy storage station: NB/T 420912016[S]. Beijing, 2016. | |
30 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电化学储能电站用锂离子电池管理系统技术规范: GB/T 343131—2017[S]. 北京: 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration. Technical specification for lithium ion battery management system for electrochemical energy storage power station: GB/T 343131—2017[S]. Beijing: 2017. | |
31 | WANG Q, SHAO G, DUAN Q, et al. The efficiency of heptafluoropropane fire extinguishing agent on suppressing the lithium titanate battery fire[J]. Fire Technology, 2016, 52(2): 387-396. |
32 | 刘昱君, 段强领, 黎可, 等. 多种灭火剂扑救大容量锂离子电池火灾的实验研究[J]. 储能科学与技术, 2018, 7(6): 1105-1112. |
LIU Y J, DUAN Q L, LI K, et al. Experimental study on fire extinguishing of large-capacity lithium-ion batteries by various fire extinguishing agents[J]. Energy Storage Science and Technology, 2018, 7(6): 1105-1112. | |
33 | 吴静云, 黄峥, 郭鹏宇. 储能用磷酸铁锂(LFP)电池消防技术研究进展[J]. 储能科学与技术, 2019, 8(3): 495-499. |
WU J Y, HUANG Z, GUO P Y. Research progress on fire protection technology of LFP lithium-ion battery used in energy storage power station[J]. Energy Storage Science and Technology, 2019, 8(3): 495-499. | |
34 | LU J, LIANG P, CHEN B, et al. Investigation of the fire-extinguishing performance of water mist with various additives on typical pool fires[J]. Combustion Science and Technology, 2020, 192(4): 592-609. |
35 | 张青松, 白伟, 程相静, 等. 哈龙替代灭火剂抑制空运锂离子电池试验研究[J]. 消防科学与技术, 2017, 36(9): 1262-1265. |
ZHANG Q S, BAI W, CHENG X J, et al. Inhibition of thermal runaway by Halon replacement fire extinguishing agent on airborne lithium ion battery[J]. Fire Science and Technology, 2017, 36(9): 1262-1265. | |
36 | MARKUS Egelhaaf, DAVID Kress, DIETER Wolpert, et al. Fire fighting of Li-ion traction batteries[J]. SAE International Journal of Alternative Powertrains, 2013, 2(1): 37-48. |
37 | 张磊, 张永丰, 黄昊, 等. 抑制锂电池火灾灭火剂技术研究进展[J]. 科技通报, 2017, 33(8): 255-258. |
ZHANG L, ZHANG Y F, HUANG H, et al. A review of extinguishing agent fighting Li-ion battery fires process[J]. Bulletin of Science and Technology, 2017, 33(8): 255-258. | |
38 | GALAJ J, DRZYMALA T, WOLNY P. Analysis of the impact of selected parameters of the hybrid extinguishing system on the fire environment in a closed room[J]. Sustainability, 2019, 11(23): 6867-6881. |
39 | 冯怡然, 金志远, 陶学恒, 等. 机动车载消防救援装备系统研发[J]. 消防科学与技术, 2019, 38(3): 405-407. |
FENG Y R, JIN Z Y, TAO X H, et al. Research and development of "Blue Shark" vehicle fire rescue equipment system[J]. Fire Science and Technology, 2019, 38(3): 405-407. | |
40 | 蔡晶, 许成昊, 林清如, 等. 预制舱式变电站设计及应用探索[J]. 广东电力, 2019, 32(8): 9-16. |
CAI J, XU C H, LIN Q, et al. Design and application of prefabricated substation[J]. Guangdong Electric Power, 2019, 32(8): 9-16. | |
41 | 阳世群. 引发电气火灾的多种电气故障与物证特征[J]. 科技成果管理与研究, 2019, 14(10): 86-87. |
YANG S Q. Various electrical faults and physical evidence characteristics that caused electrical fires[J]. Science and Technology Achievement Management and Research, 2019, 14(10): 86-87. | |
42 | 孙骞, 赵鑫亮, 张孝华. 哈龙1301、FM-200、NOVEC1230灭火剂特性及其毒性对比分析[J]. 船海工程, 2018, 47(6): 40-44. |
XUN Q, ZHAO X L, ZHANG X H. Comparison analysis of property and decomposition toxicity of Halon1301, FM-200 and NOVEC1230[J]. Ship & Ocean Engineering, 2018, 47(6): 40-44. | |
43 | 王伟丽, 郭歌. 建筑物电气火灾一体化智慧消防系统设计[J]. 消防科学与技术, 2019, 38(11): 1570-1572. |
WANG W L, GUO G. Design of smart fire fighting system for building electrical fire[J]. Fire Science and Technology, 2019, 38(11): 1570-1572. | |
44 | 孙宁, 裴文良, 闵桂元. 消防灭火机器人设计及应用[J]. 消防科学与技术, 2018, 37(7): 942-944. |
SUN N, PEI W L, MIN G Y. Design and application of fire fighting robot[J]. Fire Science and Technology, 2018, 37(7): 942-944. | |
45 | AKRAM U, NADARAJAH M, SHAH R, et al. A review on rapid responsive energy storage technologies for frequency regulation in modern power systems[J]. Renewable & Sustainable Energy Reviews, 2020, 120: 109626-109644. |
46 | YUAN X Z, SONG C, PLATT A, et al. A review of all-vanadium redox flow battery durability: Degradation mechanisms and mitigation strategies[J]. International Journal of Energy Research, 2019, 43(13): 6599-6638. |
47 | WU Z, XIE Z, YOSHIDA A, et al. Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review[J]. Renewable & Sustainable Energy Reviews, 2019, 109: 367-385. |
48 | HUANG J, GUO Z, MA Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes[J]. Small Methods, 2019, 3(1): 1800272-1800292. |
49 | LI W X. Fire risk assessment and factor analysis of buildings based on multi-target decision and fuzzy mathematical model[J]. Journal of Intelligent & Fuzzy Systems, 2019, 37(5): 6337-6348. |
50 | 朱亚平. 电池储能电站消防灭火措施探讨[J]. 上海节能, 2017(1): 33-36. |
ZHU Y P. Discuss on battery energy storage power station fire fighting measures[J]. Shanghai Energy Conservation, 2017(1): 33-36. | |
51 | 朱江, 张宏亮. 锂电池储能系统火灾危险性及防范措施[J]. 武警学院学报, 2018, 34(12): 43-45. |
ZHU J, ZHANG H L. Fire risk and preventive measures of Li battery energy storage station[J]. Journal of Chinese People's Armed Police Force Academy, 2018, 34(12): 43-45. | |
52 | 杨世福. 智慧消防: 现代消防工程智能化目标[J]. 工程技术, 2016(3): 188. |
YANG S F. Smart fire protection: The intelligent goal of modern fire protection engineering[J]. Engineering Technology, 2016(3): 188. | |
53 | WU H, WU D Y, ZHAO J S, et al. An intelligent fire detection approach through cameras based on computer vision methods[J]. Process Safety and Environmental Protection, 2019, 127: 245-246.. |
54 | 郝昭. “智慧消防”如何精准助推消防工作的思考[J]. 消防界, 2019(14): 21-22. |
HAO Z. How "Smart fire fighting" accurately promote fire fighting work[J]. Fire Protection, 2019(14): 21-22. | |
55 | 宋佳城. 用5G撬动千亿智慧消防蓝海市场[J]. 中国应急管理, 2019(10): 36-37. |
SONG J C. Leverage 5G to fobilize billions of intelligent fire fighting market[J]. China Emergency Management, 2019(10): 36-37. | |
56 | 林占勇. “互联网+消防车”的创新应用[J]. 现代职业安全, 2017: 23-25. |
LIN Z Y. Innovative application of "internet + fire truck"[J]. Modern Occupational Safety, 2017: 23-25. | |
57 | ENESCU D, CHICCO G, PORUMB R, et al. Thermal energy storage for grid applications: Current status and emerging trends[J]. Energies, 2020, 13(2): 340-361. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||