储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1517-1525.doi: 10.19799/j.cnki.2095-4239.2020.0122

• 储能系统与工程 • 上一篇    下一篇

三元软包动力锂电池热安全性

王栋1,2,3, 郑莉莉1,2,3, 李希超4, 杜光超1,2,3, 冯燕1,2,3, 贾隆舟1,2,3, 戴作强1,2,3   

  1. 1.青岛大学机电工程学院
    2.青岛大学动力集成及储能系统工程技术中心
    3.电动汽车智能化动力集成技术国家地方联合工程技术中心 (青岛 )
    4.中车青岛四方车辆研究所有限公司储能事业部,山东 青岛 260071
  • 收稿日期:2020-03-26 修回日期:2020-05-02 出版日期:2020-09-05 发布日期:2020-09-08
  • 作者简介:王栋(1996—),男,硕士研究生,主要研究方向为新能源
  • 基金资助:
    电动汽车储电系统(储能电池)-电(动力电池/超级电池)耦合成组技术研究(40518060027)

Thermal safety of ternary soft pack power lithium battery

Dong WANG1,2,3, Lili ZHENG1,2,3, Xichao LI4, Guangchao DU1,2,3, Yan FENG1,2,3, Longzhou JIA1,2,3, Zuoqiang DAI1,2,3   

  1. 1.College of Mechanical and Electrical Engineering, Qingdao University
    2.Engineering Technology Center of Power Integration and Energy Storage System, Qingdao University
    3.National and Local Joint Engineering Technology Center for Intelligent Power Integration Technology for Electric Vehicles (Qingdao )
    4.CRRC Qingdao Sifang Vehicle Research Institute Co. Ltd. , Energy Storage Division, Qingdao 260071, Shandong, China
  • Received:2020-03-26 Revised:2020-05-02 Online:2020-09-05 Published:2020-09-08

摘要:

锂离子电池频出的安全事故对电池厂商提出了更高的安全性要求,利用ARC提供的绝热环境研究了23 A·h软包NCM523动力锂电池,热失控过程中热特征参数变化、温度场的分布及热失控的演变。25% SOC电池相较于75%SOC电池的热失控触发温度低22.68 ℃,75%SOC电池相较于25% SOC电池热失控的最高温度Tm高70.07 ℃,最大温升速率大111.37 ℃/min,即75%SOC电池热失控过程化学反应放热更加剧烈,热失控破坏性较大。热失控过程中,25%SOC电池正极、负极的最高温度分别为385.5 ℃、342.7 ℃,电池正极温度高于负极42.8 ℃;75%SOC电池正极、负极的最高温度分别为508.8 ℃、365.8 ℃,电池正极温度高于负极143 ℃。25%SOC电池在119.75 ℃鼓包明显;339.35 ℃时,电池产生大量浓烟,电池没有发生爆炸,热失控后损毁较为严重,电池开始自产热到热失控最高温度总历时5.125 h。75%SOC电池171.06 ℃时正极附近出现大幅鼓起;4.77 min后,电池正负极中间处喷出大量烟雾;1 s内电池喷出火焰,电池发生爆炸,爆炸所引起的燃烧大约持续6.4 s,电池开始自产热到热失控最高温度总历时6.715 h。

关键词: 电动汽车, 三元软包锂电池, 安全性, 热失控

Abstract:

The frequent safety accidents of lithium-ion batteries have put forward higher safety requirements for battery manufacturers. Using the adiabatic environment provided by ARC, the 23 A·h soft-package NCM523 power lithium battery has been studied. During thermal runaway, thermal characteristic parameters change, temperature field distribution, and the evolution of thermal runaway. The thermal runaway trigger temperature of a 25% SOC battery is 22.68 ℃ lower than that of a 75% SOC battery. The maximum temperature Tm of a 75% SOC battery is 70.07 ℃ higher than that of a 25% SOC battery. The maximum temperature rise rate is 111.37 ℃/min. That is to say, the chemical reaction exotherm of the 75% SOC battery during thermal runaway is more severe and the thermal runaway is more destructive. During thermal runaway, the maximum temperature of the positive and negative electrodes of the 25% SOC battery are 385.5 ℃ and 342.7 ℃, respectively, and the positive temperature of the battery is higher than the negative temperature of 42.8 ℃; the maximum temperatures of the positive and negative electrodes of the 75% SOC battery are 508.8 ℃ and 365.8 ℃, respectively. The positive temperature of the battery is 143 ℃ higher than the negative temperature. The 25% SOC battery bulges obviously at 119.75 ℃; at 339.35 ℃, the battery generates a lot of thick smoke, the battery does not explode, and the damage is more serious after thermal runaway. The battery started to produce heat to the maximum temperature of thermal runaway, which took 5.125 h. When the 75% SOC battery is 171.06 ℃, a wide bulge appears near the positive electrode; after 4.77 min, a large amount of smoke is emitted between the positive and negative electrodes of the battery; within 1s, the battery emits flame, and the battery occurs The explosion, the combustion caused by the explosion lasted about 6.4 s, and the battery started to generate heat to the maximum temperature of thermal runaway for a total of 6.715 h.

Key words: electric vehicle, ternary soft pack lithium battery, safety, thermal runaway

中图分类号: