1 |
ARTHUR O, KARIM M A. An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications[J]. Renewable & Sustainable Energy Reviews, 2016, 55: 739-755.
|
2 |
LENERT A, WANG E N. Optimization of nanofluid volumetric receivers for solar thermal energy conversion[J]. Solar Energy, 2012, 86(1): 253-265.
|
3 |
CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles [R]. Argonne National Lab, IL (United States), 1995.
|
4 |
SHIN Donghyun, BANERJEE D. Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic (work in progress)[J]. The International Journal of Structural Changes in Solids, 2010, 2(2): 25-31.
|
5 |
SHIN Donghyun, BANERJEE D. Experimental investigation of molten salt nanofluid for solar thermal energy application[C]//ASME/JSME 2011 8th Thermal Engineering Joint Conference, 2011.
|
6 |
SHIN Donghyun, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1064-1070.
|
7 |
SHIN Donghyun, BANERJEE D. Enhanced specific heat of silica nanofluid[J]. Journal of Heat Transfer, 2011, 133(2): 024501.
|
8 |
DUDDA B, SHIN Donghyun. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences, 2013, 69: 37-42.
|
9 |
SHIN Donghyun, BANERJEE D. Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures[J]. Journal of Heat Transfer, 2013, 135(3): 1-21.
|
10 |
SHIN Donghyun, BANERJEE D. Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications[J]. International Journal of Heat Mass Transfer, 2015, 84: 898-902.
|
11 |
Joohyun SEO, SHIN Donghyun. Size effect of nanoparticle on specific heat in a ternary nitrate (LiNO3-NaNO3-KNO3) salt eutectic for thermal energy storage[J]. Applied Thermal Engineering, 2016, 102: 144-148.
|
12 |
MOSTAFAVI A, ERUVARAM V K, SHIN Donghyun. Experimental study of thermal performance enhancement of molten salt nanomaterials [C]//ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum, 2018.
|
13 |
QIAO Geng, LASFARGUES M, ALEXIADIS A, et al. Simulation and experimental study of the specific heat capacity of molten salt based nanofluids[J]. Applied Thermal Engineering, 2017, 111: 1517-1522.
|
14 |
JIANG Zhu, PALACIOS A, LEI Xianzhang, et al. Novel key parameter for eutectic nitrates based nanofluids selection for concentrating solar power (CSP) systems[J]. Applied Energy, 2019, 235: 529-542.
|
15 |
SONG Weilong, LU Yuanwei, WU Yuting, et al. Effect of SiO2 nanoparticles on specific heat capacity of low-melting-point eutectic quaternary nitrate salt[J]. Solar Energy Materials Solar Cells, 2018, 179: 66-71.
|
16 |
CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage[J]. Nanoscale Research Letters, 2013, 8(1): 448.
|
17 |
PEIRO G, PRIETO C, GASIA J, et al. Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: lessons learnt and recommendations for its design, start-up and operation[J]. Renewable Energy, 2018, 121: 236-248.
|
18 |
ANDREU-CABEDO P, MONDRAGON R, HERNANDEZ L, et al. Increment of specific heat capacity of solar salt with SiO2 nanoparticles[J]. Nanoscale Research Letters, 2014, 9: 582.
|
19 |
CHEN Yongsheng, HUANG Ying, LI Kungang. Temperature effect on the aggregation kinetics of CeO2 nanoparticles in monovalent and divalent electrolytes[J]. Journal of Environmental & Analytical Toxicology, 2012, 2(7): 158-162.
|
20 |
HU Yanwei, HE Yurong, ZHANG Zhenduo, et al. Enhanced heat capacity of binary nitrate eutectic salt-silica nanofluid for solar energy storage[J]. Solar Energy Materials Solar Cells, 2019, 192: 94-102.
|
21 |
MADATHIL P K, BALAGI N, SAHA P, et al. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications[J]. Applied Thermal Engineering, 2016, 109: 901-905.
|
22 |
HU Yanwei, HE Yurong, ZHANG Zhenduo, et al. Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications[J]. Energy Conversion Management, 2017, 142: 366-373.
|
23 |
CHEN Xia, WU Yuting, ZHANG Ludi, et al. Experimental study on the specific heat and stability of molten salt nanofluids prepared by high-temperature melting[J]. Solar Energy Materials Solar Cells, 2018, 176: 42-48.
|
24 |
HAO Tian. Exploring the charging mechanisms in non-aqueous multiphase surfactant solutions, emulsions and colloidal systems via conductivity behaviors predicted with eyring's rate process theory[J]. Physical Chemistry Chemical Physics, 2016, 18(1): 476-491.
|
25 |
MAHMOUD B H, FAIRWEATHER M, MORTIMER L F, et al. Prediction of stability and thermal conductivity of nanofluids for thermal energy storage applications[J]. Computer Aided Chemical Engineering, 2018, 43: 61-66.
|
26 |
姚远, 陈颖, 陆振能, 等. 纳米流体制备技术与组成结构的研究进展[J]. 流体机械, 2016, 44(11): 41-48.
|
|
YAO Yuan, CHEN Ying, LU Zhenneng, et al. Research progress of preparation and composition of nanofluids[J]. Fluid Machinery, 2016, 44(11): 41-48.
|