| 1 | 余晨露, 田晓华, 张哲娟, 等. 锂离子电池硅基负极比容量提升的研究进展[J]. 储能科学与技术, 2020, 9(6): 1614-1628. | 
																													
																						|  | YU Chenlu, TIAN Xiaohua, ZHANG Zhejuan, et al. Research progress in specific capacity improvements of silicon-based anodes on lithium-ion batteries[J]. Energy Storage Science and Technology, 2020,9(6):1614-1628 | 
																													
																						| 2 | 潘福森, 沈龙, 童磊, 等. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(S1): 132-136. | 
																													
																						|  | PAN Fusen, SHEN Long, TONG Lei, et al. Preparation and properties of nano silicon-hard carbon composites by spray drying[J]. Materials Reports, 2020, 34(S1): 132-136. | 
																													
																						| 3 | LIU Xiaohua, ZHONG Li, HUANG Shan, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-1531. | 
																													
																						| 4 | ZHAO Xiuyun, LEHTO V P. Challenges and prospects of nanosized silicon anodes in lithium-ion batteries[J]. Nanotechnology, 2020, 32(4): doi: 10.1088/1361-6528/abb850. | 
																													
																						| 5 | TIAN Huajun, TAN Xiaojian, XIN Fengxia, et al. Micro-sized nano-porous Si/C anodes for lithium ion batteries[J]. Nano Energy, 2015, 11: 490-499. | 
																													
																						| 6 | JIA Haiping, ZHENG Jianming, SONG Junhua, et al. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries[J]. Nano Energy, 2018, 50: 589-597. | 
																													
																						| 7 | HU Xiaozhen, JIN Yan, ZHU Bin, et al. Tuning density of Si nanoparticles on graphene sheets in graphene-Si aerogels for stable lithium ion batteries[J]. Journal of Colloid and Interface Science, 2018, 532: 738-745. | 
																													
																						| 8 | YU Jing, ZHAN Hanhui, WANG Yanhong, et al. Graphite microspheres decorated with Si particles derived from waste solid of organosilane industry as high capacity anodes for Li-ion batteries[J]. Journal of Power Sources, 2013, 228: 112-119. | 
																													
																						| 9 | 刘文政. 锂离子电池多孔Si@C复合负极材料的制备与性能研究[D]. 南昌: 南昌大学, 2019. | 
																													
																						|  | LIU Wenzheng. Study on fabrication and properties of porous Si@C composite in lithium ion anode materials[D]. Nanchang: Nanchang University, 2019. | 
																													
																						| 10 | ZHANG Shilin, YAO Feng, YANG Lan, et al. Sulfur-doped mesoporous carbon from surfactant-intercalated layered double hydroxide precursor as high-performance anode nanomaterials for both Li-ion and Na-ion batteries[J]. Carbon, 2015, 93: 143-150. | 
																													
																						| 11 | QIE Long, CHEN Weimin, WANG Zhaohui, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials, 2012, 24(15): 2047-2050. | 
																													
																						| 12 | MAO Ya, DUAN Hui, XU Bin, et al. Lithium storage in nitrogen-rich mesoporous carbon materials[J]. Energy & Environmental Science, 2012, 5(7): 7950-7955. | 
																													
																						| 13 | QUAN Bo, YU Seungho, CHUNG Dongyoung, et al. Single source precursor-based solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion applications[J]. Scientific Reports, 2014, 4(1): doi:10.1038/srep05639. | 
																													
																						| 14 | CHANG W S, PARK C M, KIM J H, et al. Quartz (SiO2): A new energy storage anode material for Li-ion batteries[J]. Energy & Environmental Science, 2012, 5(5): 6895-6899. | 
																													
																						| 15 | JIANG Yong, LIU Shuai, DING Yanwei, et al. Modification based on primary particle level to improve the electrochemical performance of SiOx-based anode materials[J]. Journal of Power Sources, 2020, 467: doi: 10.1016/j.jpowsour.2020.228301. | 
																													
																						| 16 | 何旻雁, 杨志伟, 王振宇, 等. 聚酰亚胺粘结剂对锂离子电池用硅碳复合材料循环性能的影响[J]. 绝缘材料, 2019, 52(5): 21-24+28. | 
																													
																						|  | HE Minyan, YANG Zhiwei, WANG Zhenyu, et al. Effect of polyimide binder on cycling performance of Si/C composite for Li-ion battery[J]. Insulating Materials, 2019, 52: 21-24+28. | 
																													
																						| 17 | CHEN Chihyu, LIANG Aihua, HUANG Chengliang, et al. The pitch-based silicon-carbon composites fabricated by electrospraying technique as the anode material of lithium ion battery[J]. Journal of Alloys and Compounds, 2020, 844: doi: 10.1016/j.jallcom.2020.156025. | 
																													
																						| 18 | WU Rui, LIU Xianqiang, ZHENG Yijing, et al. Unveiling the intrinsic reaction between silicon-graphite composite anode and ionic liquid electrolyte in lithium-ion battery[J]. Journal of Power Sources, 2020, 473: doi: 10.1016/j.jpowsour.2020.228481. | 
																													
																						| 19 | PENG Bo, XU Yaolin, WANG Xiaoqun, et al. The electrochemical performance of super P carbon black in reversible Li/Na ion uptake[J]. Science China (Physics, Mechanics & Astronomy), 2017, 60(6): 58-65. | 
																													
																						| 20 | 孟奇, 张英杰, 董鹏, 等. 硅/碳纳米管/碳复合材料的制备及其电化学性能研究[J]. 化工新型材料, 2020, 48(10): 101-105+114. | 
																													
																						|  | MENG Qi, ZHANG Yingjie, DONG Peng, et al. Electrochemical properties and preparation of silicon/carbon nanotubes/carbon composites[J]. New Chemical Materials, 2020, 48(10): 101-105+114. |