1 |
JIAO Yan, ZHENG Yao, JARONIEC M, et al. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44: 2060-2086.
|
2 |
YOU Bo, SUN Yujie. Chalcogenide and phosphide solid-state catalysts for H2 generation[J]. ChemPlusChem, 2016, 81: 1045-1055.
|
3 |
ZHU Yunpei, GUO Chunxian, ZHENG Yao, et al. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes[J]. Accounts of Chemical Research, 2017, 50: 915-923.
|
4 |
BREEZE P. Hydrogen energy storage[M]. New York: Academic Press, 2018: 69-77.
|
5 |
YANG Lu, XIE Pengli, ZHANG Ronghui, et al. HIES: Cases for hydrogen energy and I-Energy[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29785-29804.
|
6 |
KOPP M, COLEMAN D, STILLER C, et al. Energiepark mainz: Technical and economic analysis of the worldwide largest power-to-gas plant with PEM electrolysis[J]. International Journal of Hydrogen Energy, 2017, 4: 13311-13320.
|
7 |
郭秀盈, 李先明, 许壮, 等, 可再生能源电解制氢成本分析[J]. 储能科学与技术, 2020, 9(3): 689-695.
|
|
GUO Xiuying, LI Xianming, XU Zhuang, et al. Cost analysis of hydrogen production by electrolysis of renewable energy[J]. Energy Storage Science and Technology, 2020, 9(3): 689-695.
|
8 |
JIA J Y, SEITZ L C, BENCK J D, et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%[J]. Nature Communications, 2016, 7: doi: 10.1038/ncomms13237.
|
9 |
PAIDAR M, FATEEY V, BOUZEK K. Membrane electrolysis' history, current status and perspective[J]. Electrochimica Acta, 2016, 209: 737-756.
|
10 |
GRIGORIEV S A, FATEEV V N, BESSARABOVET D G, et al. Current status, research trends, and challenges in water electrolysis science and technology[J]. International Journal of Hydrogen Energy, 2020, 3: doi:10.1016/j.ijhydene.2020.03.109.
|
11 |
SUN Shucheng, SHAO Zhigang, YU Hongmei, et al. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack[J]. Journal of Power Sources, 2014, 267: 515-520.
|
12 |
KAY B, CRISTINA D L R, MAXIMILIAN M, et al. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems[J]. Applied Energy, 2019, 237: 862-872.
|
13 |
LEI Jie, YANG Junjie, LIU Ting, et al. Tuning redox active polyoxometalates for efficient electron-coupled proton-buffer-mediated water splitting[J]. Chemistry—A Uropean Journal, 2019, 25(49) 11432-11436.
|
14 |
GREIG C, LEROY C, MARK D S, et al. Decoupled electrolysis using a silicotungstic acid electron-coupled-proton buffer in a proton exchange membrane cell[J]. Electrochimica Acta, 2020, 331: doi:10.1016/j.electacta.2019135255.
|
15 |
BLOOR L G, SOLARSKA R, BIENKOWSKI K, et al. Solar-driven water oxidation and decoupled hydrogen production mediated by an electron-coupled-proton buffer[J]. Journal of the American Chemical Society, 2016, 138(21): 6707-6710.
|
16 |
LI Fei, YU Fengshou, DU Jian, et al. Water splitting via decoupled photocatalytic water oxidation and electrochemical proton reduction mediated by electron-coupled-proton buffer[J]. Chemistry—An Asian Journal, 2017, 12(20): 2666-2669.
|
17 |
SYMES M D, CRONIN L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer[J]. Nature Chemistry, 2013, 5: 403-409.
|
18 |
MACDONALD L, MCGLYNN J C, IRVINE N, et al. Using earth abundant materials for the catalytic evolution of hydrogen from electron-coupled proton buffers[J]. Sustainable Energy & Fuels, 2017, 1: 1782-1787.
|
19 |
WU Weiming, WU Xiaoyuan, WANG Sasa, et al. Highly efficient hydrogen evolution from water electrolysis using nanocrystalline transition metal phosphide catalysts[J]. RSC Advances, 2018, 8: doi:10.1039/C8RA07195K.
|
20 |
XIE Jingyi, LIU Zizhang, LI Jia, et al. Fe-doped CoP core shell structure with open cages as efficient electrocatalyst for oxygen evolution[J]. Journal of Energy Chemistry, 2020, 48: 328-333.
|
21 |
SHI Yanmei, ZHANG Bin. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction[J]. Chemical Society Reviews, 2016, 45(6) 1529-1541.
|
22 |
JANOSCHKAL T, MARTIN N, MARTIN U, et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials[J]. Nature, 2015, 527: 78-81.
|
23 |
LIN Kaixiang, CHEM Q, GERHARDT M R, et al. Alkaline quinone flow battery[J]. Science, 2015, 349: 1529-1532.
|
24 |
苏秀丽, 董晓丽, 刘瑶, 等, 基于钛酸锂负极和聚三苯胺正极的电池电容体系[J]. 电化学, 2018, 24(4): 324-331.
|
|
SU Xiuli, DONG Xiaoli, LIU Yao, et al. Hybrid battery-capacitor system based on Li4Ti5O12 anode and PTPAn cathode[J]. Journal of Electrochemistry, 2018, 24(4): 324-331.
|
25 |
RAUSCH B, SYMES M D, CRONIN L. A bio-inspired, small molecule electron-coupled-proton buffer for decoupling the half-reactions of electrolytic water splitting[J]. Journal of the American Chemical Society, 2013, 135(37): 13656-13659.
|
26 |
KIRKALDY N, CHISHOLM G, CHEN J J, et al. A practical, organic-mediated, hybrid electrolyser that decouples hydrogen production at high current densities[J]. Chemical Science, 2018, 9: 1621-1626.
|
27 |
AMSTUTZ V, TOGHILL K E, POWLESLAND F, et al. Renewable hydrogen generation from a dual-circuit redox flow battery[J]. Energy & Environmental Science, 2014, 7: 2350-2358.
|
28 |
LI Wei, JIANG Nan, HU Bo, et al. Electrolyzer design for flexible decoupled water splitting and organic upgrading with electron[J]. Chem, 2018, 4: 637-649.
|
29 |
YOU Bo, LIU Xuan, HU Guoxiang, et al. Universal surface engineering of transition metals for superior electrocatalytic hydrogen evolution in neutral water[J]. Journal of the American Chemical Society, 2017, 139: 12283-12290.
|
30 |
马元元, 郭昭薇, 王永刚, 等, 电池电极反应的新应用: 分步法电解制氢气[J]. 电化学, 2018, 24(5): 444-454.
|
|
MA Yuanyuan, GUO Zhaowei, WANG Yonggang, et al. The new application of battery-electrode reaction: Decoupled hydrogen production in water electrolysis[J]. Journal of Electrochemistry, 2018, 24(5): 444-454.
|
31 |
MA Yuanyuan, DONG X, WANG Y, et al. Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode[J]. Angewandte Chemie International Edition, 2018, 57(11): 2904-2908.
|
32 |
MA Yuanyuan, GUO Zhaowei, DONG Xiaoli, et al. Organic proton-buffer electrode to separate hydrogen and oxygen evolution in acid water electrolysis[J]. Angewandte Chemie International Edition, 2019, 58: 4622-4626.
|
33 |
CHEN Long, DONG Xiaoli, WANG Yonggang, et al. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide[J]. Nature Communication, 2016, 7: doi:10.1038/ncomms11741.
|
34 |
MA Yuanyuan, DONG Xiaoli, WANG Yonggang, et al. Combining water reduction and liquid fuel oxidization by nickel hydroxide for flexible hydrogen production[J]. Energy Storage Materials, 2018, 11: 260-266.
|
35 |
CHOI B, PANTHI D, NAKOJI M, et al. A novel water-splitting electrochemical cycle for hydrogen production using an intermediate electrode[J]. Chemical Engineering Science, 2017, 157: 200-208.
|
36 |
AYERS K E, ANDERSON E B, CAPUANO C, et al. Research advances towards low cost, high efficiency PEM electrolysis[J]. ECS Transactions, 2010, 33: 3-15.
|
37 |
LANDMAN A, DOTAN H, SHTER G E, et al. Photoelectrochemical water splitting in separate oxygen and hydrogen cells[J]. Nature Material, 2017, 16: 646-651.
|
38 |
HUNTER B M, GRAY H B, MULLER A M, et al. Earth-abundant heterogeneous water oxidation catalysts[J]. Chemical Review, 2016, 116: 14120-14136.
|
39 |
AVIGAIL L, RAWAN H, PAULA D, et al. Decoupled photoelectrochemical water splitting system for centralized hydrogen production[J]. Joule, 2020, 4: 448-471.
|
40 |
HOU Mengyan, CHEN Long, GUO Zhaowei, et al. A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production[J]. Nature Communications, 2018, 9: doi:10.1038/s41467-018-02877-x.
|