1 |
WANG L, HE X M, SUN W T, WANG J L, LI Y D, FAN S S. Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials[J]. Nano Lett, 2012, 12 (11): 5632-5636.
|
2 |
WANG L, LI J G, HE X M, PU W H, WAN C R, JIANG C Y. Recent advances in layered LiNixCoyMn1-x-yO2 cathode materials for lithium ion batteries[J]. J Solid State Electrochem, 2009, 13 (8): 1157-1164.
|
3 |
ZHAO H, SHENG L, WANG L, XU H, HE X M. The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells[J]. Energy Storage Materials, 2020, 33: 360-381.
|
4 |
WANG H, SHENG L, YASIN G, WANG L, XU H, HE X. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2020, 33: 188-215.
|
5 |
FENG X, REN D, HE X, OUYANG M. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4 (4): 743-770.
|
6 |
SUN Y, WANG L, LI Y, LI Y, LEE H R, PEI A, HE X, CUI Y. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density[J]. Joule, 2019, 3 (4): 1080-1093.
|
7 |
赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019(4): 613-630.
|
|
ZHAO Y, KANG Y Q, JIN Y H, WANG L, TIAN G Y, HE X M. Silicon-based and related materials for lithium-ion batteries[J]. Progress in Chemistry, 2019(4): 613-630.
|
8 |
王莉, 何向明, 高剑, 李建军, 姜长印. 锂离子电池正极材料生产技术的发展[J]. 储能科学与技术, 2018(5): 888-896.
|
|
WANG L, HE X M, GAO J, LI J J, JIANG C Y. Manufacturing method for cathode materials of Li-ion batteries[J]. Energy Storage Science and Technology, 2018(5): 888-896.
|
9 |
DING K, QU R, ZHOU L, ZHANG D, CHEN J, HE X, WANG L, WANG H, DOU H. Preparation of CuBr nanoparticles on the surface of the commercial copper foil via a soaking method at room temperature: Its unexpected facilitation to the discharge capacity of the commercial graphite electrode[J]. J Electroanal Chem, 2020, 877: 114626.
|
10 |
DING K, QU R, ZHOU L, ZHANG D, CHEN J, HE X M, WANG L, WANG H, DOU H. In situ preparation of CuClcubic particles on the commercial copper foil: Its significant facilitation to the electrochemical performance of the commercial graphite and its unexpected photochromic behavior[J]. J Alloy Compd, 2020, 835: doi.org/10.1016/j.jallcom.2020.155302.
|
11 |
ZHAO H P, REN J G, HE X M, LI J J, JIANG C Y, WAN C R. Modification of natural graphite for lithium ion batteries[J]. Solid State Sci, 2008, 10 (5): 612-617.
|
12 |
ZHAO H P, REN J G, HE X M, LI J J, JIANG C Y, WAN C R. Purification and carbon-film-coating of natural graphite as anode materials for Li-ion batteries[J]. Electrochim Acta, 2007, 52 (19): 6006-6011.
|
13 |
LI J J, HE X M, JIANG C Y, WAN C R. Coke coating of natural graphite for Li-ion batteries[J]. J New Mat Electrochem Syst, 2006, 9 (1): 21-25.
|
14 |
FENG X, OUYANG M, LIU X, LU L, XIA Y, HE X M. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
|
15 |
JIA M, JIN Y, ZHAO P, ZHAO C, JIA M, WANG L, HE X M. Hollow NiCoSe2 microspheres@N-doped carbon as high-performance pseudocapacitive anode materials for sodium ion batteries[J]. Electrochim Acta, 2019, 310: 230-239.
|
16 |
JIN Y H, WANG L, SHANG Y M, GAO J, LI J J, HE X M. Three-dimension hierarchical flower-like Ni1.5Co1.5O4 nanostructures composed of two-dimension ultrathin nanosheets as an anode material for lithium ion batteries[J]. Mater Lett, 2015, 151: 49-52.
|
17 |
JIN Y H, WANG L, SHANG Y M, GAO J, LI J J, HE X M. Facile synthesis of monodisperse Co3O4 mesoporous microdisks as an anode material for lithium ion batteries[J]. Electrochim Acta, 2015, 151: 109-117.
|
18 |
ZHAO H P, JIANG C Y, HE X M, REN J G, WAN C R. A novel composite anode for LIB prepared via template-like-directed electrodepositing Cu-Sn alloy process[J]. Ionics, 2008, 14 (2): 113-120.
|
19 |
REN J G, HE, X M, WANG L, PU W H, JIANG C Y, WAN C R. Nanometer copper-tin alloy anode material for lithium-ion batteries[J]. Electrochim Acta, 2007, 52 (7): 2447-2452.
|
20 |
WANG K, HE X M, REN J G, WANG L, JIANG C Y, WAN C R. Preparation of Sn2Sb alloy encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of the oxides[J]. Electrochim Acta, 2006, 52 (3): 1221-1225.
|
21 |
PU W H, HE X M, REN J G, WAN C R, JIANG C Y. Electrodeposition of Sn-Cu alloy anodes for lithium batteries[J]. Electrochim Acta, 2005, 50 (20): 4140-4145.
|
22 |
ZHOU J, SHI Q, ULLAH S, YANG X, BACHMATIUK A, YANG R, RUMMELI M H. Phosphorus-based composites as anode materials for advanced alkali metal ion batteries[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202004648.
|
23 |
CHANG G, ZHAO Y, DONG L, WILKINSON D P, ZHANG L, SHAO Q, YAN W, SUN X, ZHANG J. A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries[J]. J Mater Chem A, 2020, 8 (10): 4996-5048.
|
24 |
ZHAO H, WANG L, CHEN Z, HE X. Challenges of fast charging for electric vehicles and the role of red phosphorous as anode material: Review[J]. Energies, 2019, 12(20): doi: 10.3390/en12203897.
|
25 |
周朝辉, 王莉, 李建刚, 何向明. 单质磷复合材料在二次电池中的应用研究进展[J]. 储能科学与技术, 2016, 5 (4): 430-435.
|
|
ZHOU Z H, WANG L, LI J G, HE X M. Recent advances of elemental phosphorus composite as anode materials for secondary batteries[J]. Energy Storage Science and Technology, 2016, 5 (4): 430-435.
|
26 |
李骄阳, 王莉, 何向明, 磷基复合负极在二次电池中的研究进展[J]. 化学进展, 2016, 28 (Z2): 193-203.
|
|
LI J Y, WANG L, HE X M. Phosphorus-based composite anode materials for secondary batteries[J]. Progress in Chemistry, 2016, 28 (Z2): 193-203.
|
27 |
WANG L, HE X M, LI J J, SUN W T, GAO J, GUO J W, JIANG C Y. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries[J]. Angew Chem -Int Edit, 2012, 51 (36): 9034-9037.
|
28 |
LI J Y, QIAN Y M, WANG L, HE X M. Nitrogen-doped carbon for red phosphorous based anode materials for lithium ion batteries[J]. Materials, 2018, 11 (1): 134-142.
|
29 |
BAI A J, WANG L, LI Y, HE X M, WANG J X, WANG J L. Composite of graphite/phosphorus as anode for lithium-ion batteries[J]. J Power Sources, 2015, 289: 100-104.
|
30 |
LI J Y, WANG L, HE X M, WANG J L. Effect of pore size distribution of carbon matrix on the performance of phosphorus@carbon material as anode for lithium-ion batteries[J]. ACS Sustain Chem Eng, 2016, 4(8): 4217-4223.
|
31 |
LI J Y, WANG L, REN Y M, ZHANG Y, WANG Y F, HU A G, HE X M. Distinctive slit-shaped porous carbon encapsulating phosphorus as a promising anode material for lithium batteries[J]. Ionics, 2016, 22 (2): 167-172.
|
32 |
LI J, WANG L, WANG Z, TIAN G, HE X. Economic and high performance phosphorus-carbon composite for lithium and sodium storage[J]. ACS Omega, 2017, 2 (8): 4440-4446.
|
33 |
周朝辉, 王莉, 李建刚, 何向明, 尚玉明, 王建龙. PAA黏结剂用于高比容量锂离子电池磷@碳负极[J]. 储能科学与技术, 2017, 6 (6): 1328-1332.
|
|
ZHOU Z H, WANG L, LI J J, HE X M, SHANG Y M, WANG J L. Application of PAA binder in high capacity phosphorus@carbon composite anode for lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6 (6): 1328-1332.
|
34 |
陆浩, 李金熠, 刘柏男, 等, 锂离子电池纳米硅碳负极材料研发进展[J]. 储能科学与技术, 2017, 6 (5): 864-870.
|
|
LU H, LI J, LIU B, LI H. Research and technology progress of nano-Si/C anode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6 (5): 864-870.
|
35 |
L J C, L X, J M S, et al. Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries[J]. Advanced Materials, 2020, 32(17): 1908470-1908477.
|
36 |
ZHANG Miao, XIANG Lei, MASSIMILIANO & Galluzzi, et al. Uniform distribution of alloying/dealloying stress for high structural stability of an al anode in high-areal-density lithium-ion batteries[J]. Advanced Materials, 2019, 31(18): 10.1002/adma.201900826.
|
37 |
周小龙, 欧学武, 刘齐荣, 唐永炳, 双离子电池研究进展[J]. 储能科学与技术,2020, 9 (2): 551-568.
|
|
ZHOU X L, OU X W, LIU Q R, TANG Y B. Research progress on dual-ion batteries[J]. Energy Storage Science and Technology, 2020, 9 (2): 551-568.
|
38 |
WANG L, ZHOU Z H, LI J G, HE X M. Red phosphorus composite anodes for Li-ion batteries[J]. Ionics, 2018, 24(1): 303-308.
|
39 |
TIAN W, WANG L, HUO K, HE X M. Red phosphorus filled biomass carbon as high-capacity and long-life anode for sodium-ion batteries[J]. J Power Sources, 2019, 430: 60-66.
|