1 |
杨经纬, 张宁, 王毅, 等. 面向可再生能源消纳的多能源系统: 述评与展望[J]. 电力系统自动化, 2018, 42(4): 11-24.
|
|
YANG J W, ZHANG N, WANG Y, et al. Multi-energy system towards renewable energy accommodation: Review and prospect[J]. Automation of Electric Power Systems, 2018, 42(4): 11-24.
|
2 |
刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社, 2015: 57-64.
|
|
LIU Z Y. Global energy internet[M]. Beijing: China Electric Power Press, 2015: 57-64.
|
3 |
ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 45(7179): 652-657.
|
4 |
陈龙, 池上森, 董源, 等. 全固态锂电池关键材料—固态电解质研究进展[J]. 硅酸盐学报, 2018, 46(1): 21-34.
|
|
CHEN L, CHI S S, DONG Y, et al. Research progress of key materials for all-solid-state lithium batteries[J]. Journal of the Chinese Ceramic Society, 2018, 46(1): 21-34.
|
5 |
王鹏博, 郑俊超. 锂离子电池的发展现状及展望[J]. 自然杂志, 2017, 39(4): 283-289.
|
|
WANG P B, ZHENG J C. The present situation and expectation of lithium-ion battery[J]. Chinese Journal of Nature, 2017, 39(4): 283-289.
|
6 |
李妙然, 樊珍娜. 我国绿色金融研究回顾与展望——基于Cite Space的可视化分析[J]. 金融发展研究, 2020(8): 86-88.
|
|
LI M R, FAN Z N. Review and prospect of China's green finance research—Visual analysis based on Cite Space[J]. Journal of Financial Development Research, 2020(8): 86-88.
|
7 |
孟庆麟, 刘巍. 基于CSSCI文献的新闻出版知识图谱分析[J]. 出版科学, 2019, 27(3): 21-26.
|
|
MENG Q L, LIU W. Analysis of news publishing knowledge map based on CSSCI literature[J]. Publishing Journal, 2019, 27(3): 21-26.
|
8 |
陈大洋, 宗曾艳, 熊丹, 等. 基于Cite Space的鼻咽癌研究文献计量学分析[J]. 肿瘤防治研究, 2020, 47(8): 596-599.
|
|
CHEN D Y, ZONG Z Y, XIONG D, et al. Bibliometric analysis of nasopharyngeal carcinoma based on Cite Space[J]. Cancer Research on Prevention and Treatment, 2020, 47(8): 596-599.
|
9 |
李凤侠, 张俊, 赵呈刚. 基于文献计量学的氢脆研究的演进、热点和趋势分析[J]. 材料导报, 2019, 33(z2): 488-496.
|
|
LI F X, ZHANG J, ZHAO C G. Research progress, hotspots and trends of hydrogen embrittlement based on bibliometrics[J]. Materials Review, 2019, 33(z2): 488-496.
|
10 |
CHEN C M, IBEKWE-SANJUAN F, HOU J H. The structure and dynamics of co-citation clusters: a multiple-perspective co-citation analysis[J]. Journal of the American Society for Information Science, 2010, 61(7): 1386-1409.
|
11 |
CHEN C M, CHEN Y, HOU J H, et al. Cite Space II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science, 2006, 57(3): 359-377.
|
12 |
CHEN C M. Searching for intellectual turning points: Progressive knowledge domain visualization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(S 1): 5303-5310.
|
13 |
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
|
14 |
PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144 (4): 1188-1194.
|
15 |
WANG D H, KOU R, CHOI D, et al, Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage[J]. ACS Nano ,2010, 4 (3), 1587-1595.
|
16 |
马莹. 湿法工艺在锂离子电池材料制备中的应用[J]. 矿冶工程, 2005, 25(1): 65-67.
|
|
MA Y. Application of wet process in preparation of lithium ion battery materials[J]. Mining and Metallurgical Engineering, 2005, 25(1): 65-67.
|
17 |
KIM Y J, HONG Y, MIN G K, et al. Li0.93[Li0.21Co0.25Mn0.51]O2 nanoparticles for lithium battery cathode material made by cationic exchange from K-birnessite[J]. Electrochemistry Communications, 2007, 9: 1041-1046.
|
18 |
林晓园, 陈立宝, 王太宏. 共沉淀法制备LiNi0.5)Mn1.5O4正极材料及其性能[J]. 电源技术, 2010, 34(7: 644-646.
|
|
LIN X Y, CHEN L B, WANG T H. Performance of LiNi0.5)Mn1.5O4 cathode material synthesized by coprecipitation method[J]. Chinese Journal of Power Sources, 2010, 34(7: 644-646.
|
19 |
吴士超, 郭云霞, 周建华, 等. 高温热处理对水热离子交换法制备钛酸锂纳米棒的结构和性能影响[J]. 无机材料学报, 2011, 26(2): 123-128.
|
|
WU S C, GUO Y X, ZHOU J H, et al. Effect of heat-treatment temperature on the structure and properties of Li4Ti5O12 nanorods prepared by the hydrothermal ion exchange method[J]. Journal of Inorganic Materials, 2011, 26(2): 123-128.
|
20 |
YANG M Y, TENG T, WU S. LiFePO4/carbon cathode material prepared by ultrasonic spray pyrolysis[J]. Journal of Power Sources, 2006, 159: 307-311.
|
21 |
XIA Y, FANG R, XIAO Z, et al. Confining sulfur in N-doped porous carbon microspheres derived from microalgaes for advanced lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23782-23791.
|
22 |
CUI Y, LIEBER C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks[J]. Science, 2001, 291: 851-853.
|
23 |
CUI Y, WEI Q, PARK H, et al. Nanowire nanosensors for highly-sensitive, selective and integrated detection of biological and chemical species[J]. Science, 2001, 293: 1289-1292.
|
24 |
AN Y L, TIAN Y, WEI H, et al. Porosity-and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode[J]. Advanced Functional Materials, 2019, 30 (9): doi: 10.19799/adfm.201908721.
|
25 |
TIAN Y, AN Y L, WEI C L, et al. Flexible and Free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries[J]. ACS Nano 2019, 13 (10): 11676-11685.
|
26 |
TIAN Y, AN Y L, FENG J K. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11 (10): 10004-10011.
|
27 |
AN Y, TIAN Y, WEI C, et al. Scalable and physical synthesis of 2D silicon from bulk layered alloy for lithium-ion batteries and lithium metal batteries[J]. ACS Nano, 2019, 13(12): 13690-13701.
|
28 |
TU Z Y, SNEHASHIS C, MICHAEL J. et al. Fast ion transport at solid-solid interfaces in hybrid battery anodes[J]. Nature Energy,2018, 3(5): 310-316.
|
29 |
GOODENOUGH J B. How we made the Li-ion rechargeable battery[J]. Nature Electronics, 2018, 1(3): 204-210.
|
30 |
LI Y, CHEN X, DOLOCAN A, et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries[J]. Journal of the American Chemical Society, 2018, 140(20): 6448-6455.
|
31 |
LI Y T, XU H H, CHIEN P, et al. A perovskite electrolyte that is stable in moist air for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2018, 130(28): 8723-8727.
|
32 |
GAO H C, XIN S, XUE L G, et al. Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte[J]. Chem, 2018, 4(4): 833-844.
|
33 |
NI J F, LI L. Self‐supported 3D array electrodes for sodium microbatteries[J]. Advanced Functional Materials, 2018, 28(3): doi: 10.19799/adfm.201704880.
|
34 |
NI J F, DAI A, YUAN Y F, et al. Three-dimensional microbatteries beyond lithium ion[J]. Matter, 2020, 2(3): 1366-1376.
|
35 |
UPLER H B, WILD A, SCHUBERT U S. Carbonyls: Powerful organic materials for secondary batteries[J]. Advanced Energy Materials, 2015, 5(11): 1-34.
|
36 |
陈军, 丁能文, 李之峰, 等. 锂离子电池有机正极材料[J]. 化学进展, 2015, 27(9): 1291-1301.
|
|
CHEN J, DING N W, LI Z F, et al. Organic cathode material for lithium ion battery[J]. Progress in Chemistry, 2015, 27(9): 1291-1301.
|
37 |
王运灿, 罗琳, 刘钰, 等. 锂离子电池聚合物正极材料研究进展[J]. 化工进展, 2013, 32(1): 134-139.
|
|
WANG Y C, LUO L, LIU Y, et al. Research development on polymer cathode material for lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 134-139.
|
38 |
王诗文, 陶占良, 陈军. 锂离子电池有机共轭羰基化合物电极材料研究进展[J]. 科学通报, 2013, 58(31): 3132-3139.
|
|
WANG S W, TAO Z L, CHEN J. Organic conjugated carbonyl compounds as electrode materials for lithium-ion batteries[J]. Chinese Science Bulletin, 2013, 58(31): 3132-3139.
|