储能科学与技术 ›› 2021, Vol. 10 ›› Issue (5): 1514-1523.doi: 10.19799/j.cnki.2095-4239.2021.0337

• 物理储能十年专刊·压缩空气 • 上一篇    下一篇

压缩空气储能系统释能过程动态调控

李扬1,2(), 张新敬2,3(), 宋健斐1, 李笑宇2,4, 郭欢2,3, 徐玉杰2,3, 陈海生2,3   

  1. 1.中国石油大学(北京),北京 102249
    2.中国科学院工程热物理研究所,北京 100190
    3.中国科学院大学,北京 100049
    4.华北电力大学,河北 保定 071003
  • 收稿日期:2021-07-13 修回日期:2021-07-26 出版日期:2021-09-05 发布日期:2021-09-08
  • 通讯作者: 张新敬 E-mail:2019215349@student.cup.edu.cn;zhangxinjing@iet.cn
  • 作者简介:李扬(1996—),男,硕士研究生,主要研究方向为压缩空气储能技术,E-mail:2019215349@student.cup.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFE0117300);国家杰出青年科学基金项目(51925604);中国科学院战略高技术创新基金项目(GQRC-19-12);中国科学院国际合作局国际伙伴计划项目(182211KYSB20170029)

Dynamic regulation and control of the discharge process in compressed air energy storage system

Yang LI1,2(), Xinjing ZHANG2,3(), Jianfei SONG1, Xiaoyu LI2,4, Huan GUO2,3, Yujie XU2,3, Haisheng CHEN2,3   

  1. 1.China University of Petroleum, Beijing 102249, China
    2.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
    4.North China Electric Power University, Baoding 071003, Hebei, China
  • Received:2021-07-13 Revised:2021-07-26 Online:2021-09-05 Published:2021-09-08
  • Contact: Xinjing ZHANG E-mail:2019215349@student.cup.edu.cn;zhangxinjing@iet.cn

摘要:

压缩空气储能被认为是最具有发展前景的大规模储能技术,而压缩空气储能系统运行过程面对的是储气室压力变化以及输入/输出功率变化的复杂工况。针对压缩空气储能系统变工况运行需求和节流阀减压调节膨胀机入口压力存在控制精度低、压力损失大等问题,本研究提出采用阀门组合与减压容器相结合的压力控制单元来调控膨胀机入口压力、满足输出功率需求,并建立了集成压力控制单元的10 MW蓄热式压缩空气储能系统热力学模型。在此基础上,研究了储释能过程压力、温度、质量流量、功率等关键参数随时间的变化规律,揭示了阀门组合与减压容器相结合的压力控制单元调控膨胀机入口压力的机理与效果。压力控制单元与节流减压方式相比,释能过程的总?损失减小1.56×108 J,储能效率提高0.24%,储能密度提高0.04 MJ/m3。结果表明,本研究所提出的压力控制单元可以平滑地调控膨胀机入口压力,对保障压缩空气储能系统稳定高效运行,提高系统综合性能具有重要的作用。

关键词: 压缩空气储能系统, 释能过程, 动态调控, 压力控制, 系统性能

Abstract:

Compressed- air energy storage (CAES) is considered the most promising large-scale energy storage technology; however, CAES systems are faced with complex operating conditions, including pressure change in the air storage chamber and input/output power changes. Because of the demand for off-design conditions of CAES systems and the limitations of low control accuracy and large pressure loss in the throttle valve decompression regulating the inlet pressure of turbines, a pressure control unit combined with the valve combinations and expansion tank is proposed herein to regulate the inlet pressure of turbines and meet the output power demand. A thermodynamic model of a 10 MW CAES system with thermal storage integrated pressure control unit was established. Then, the variations of important parameters, including pressure, temperature, mass flow rate, and power, with time in the charging and discharging processes were investigated. Furthermore, the mechanism and effect of the pressure control unit combined with the valve combination and expansion tank in regulating the inlet pressure of the turbine were assessed. Compared with the throttle decompression mode, the total exergy destruction of the pressure control unit in the discharge process was reduced by 1.56×108 J, and the energy storage efficiency and density was increased by 0.24% and 0.04 MJ/m3. The pressure control unit can smoothly regulate the inlet pressure of the turbine, which ensures the stable and efficient operation of the CAES system and improves the comprehensive performance of the system.

Key words: compressed air energy storage system, discharge process, dynamic control, pressure control, system performance

中图分类号: