储能科学与技术 ›› 2021, Vol. 10 ›› Issue (5): 1524-1535.doi: 10.19799/j.cnki.2095-4239.2021.0338

• 物理储能十年专刊·压缩空气 • 上一篇    下一篇

CAES轴流涡轮弯导叶优化设计与流动损失控制机理

王星1,2(), 李文1,2, 朱阳历1,2, 左志涛3, 陈海生1,2,4()   

  1. 1.中国科学院工程热物理研究所,北京 100190
    2.中国科学院大学,北京 100049
    3.毕节高新技术产业开发区国家能源大规模物理储能技术研发中心,贵州 毕节 551712
    4.中科南京未来;能源系统研究院,江苏 南京 211135
  • 收稿日期:2021-07-13 修回日期:2021-07-25 出版日期:2021-09-05 发布日期:2021-09-08
  • 作者简介:王星(1986—),男,副研究员,研究方向为叶轮机械内流分析及优化设计,E-mail:wangxing@iet.cn|陈海生,研究员,研究方向为压缩空气储能,E-mail:chen_hs@mail.etp.ac.cn
  • 基金资助:
    国家重点研发计划项目(2017YFB0903602);国家杰出青年科学基金项目(51925604);中国科学院国际合作局国际伙伴计划项目(182211KYSB20170029);贵州省科技计划项目(黔科合基础;[2019]1442号

Optimal design and flow loss reduction mechanism of bowed guide vane in a CAES axial flow turbine

Xing WANG1,2(), Wen LI1,2, Yangli ZHU1,2, Zhitao ZUO3, Haisheng CHEN1,2,4()   

  1. 1.Institute of Engineering Thermophysics, Chinese Academy of Science, Beijing 100190, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.National Energy Large Scale Physical Energy Storage Technologies R&D Center of Bijie High-tech Industrial Development Zone, Bijie 551712, Guizhou, China
    4.Nanjing Institute of Future Energy System, Institute of Engineering Thermophysics, Chinese Academy of Science, Nanjing 211135, Jiangsu, China
  • Received:2021-07-13 Revised:2021-07-25 Online:2021-09-05 Published:2021-09-08

摘要:

应用于压缩空气储能系统(CAES)的轴流涡轮具有运行压力高、导叶展弦比低、端壁二次流影响大的特点。为进一步提高效率,本文引入导叶弯曲造型并进行优化设计,获得了最优导叶弯曲参数及其对流动损失的控制机理。研究结果表明:不同弯高下均存在一个最佳弯角值使等熵效率最大;随弯高增加,最佳弯角值逐渐减小。在不同弯高下,轴流涡轮质量流量均随着弯角先减小后增大,并在弯角为7°左右达到最小值。优化设计结果表明,当弯曲角和相对弯高分别为12.26°和0.31时,轴流涡轮等熵效率提高幅度最大为0.77%,此时质量流量仅增加0.1 kg/s。与应用于其他领域的涡轮不同,最优弯导叶对CAES轴流涡轮流场的改善效果主要集中在动叶通道内部:通过降低动叶轮毂和机匣表面附近进口气流角,消除动叶前缘根部滞止鞍点,限制马蹄涡影响范围;最优弯导叶也使叶顶前缘鞍点位置向下游移动,减低叶顶前缘吸力面附近马蹄涡分支的影响范围,延迟了叶顶间隙泄漏流的产生,减弱叶顶间隙泄漏流与上通道涡作用强度,最终降低流动损失。

关键词: 压缩空气储能, 轴流涡轮, 弯叶片, 优化设计, 流动机理

Abstract:

Axial-flow turbines adopted in compressed-air energy storage (CAES) systems are characterized by higher operating pressure, vane with lower aspect ratio, and obvious end-wall secondary flow loss. To increase the efficiency, herein, bowed design is introduced into the vane, and the system is optimized. Moreover, the flow-loss control mechanism of optimal bowed vanes is investigated. The results show an optimal bending angle for maximum isentropic efficiency under each bending height. With an increase in the bending height, the optimal bending angle gradually decreases. The mass flow rate of the axial-flow turbine decreases first and then increases with an increase in the bending angle; a minimum mass flow rate is observed close to the bending angle of 7°. The optimal design results show that when the bending angle and relative bending height are 12.26° and 0.31°, respectively, the isentropic efficiency can be increased by 0.77%, and the mass flow rate increases by only 0.1 kg/s. Although the optimal bowed structure has some negative effects on its own flow field in the vane, it still reduces the inlet flow angle of the rotor blade near the hub, eliminates the stagnation saddle point in front of the rotor-blade leading edge, and limits the influence range of horseshoe vortex and interaction with the end-wall secondary flow. Moreover, the saddle point in the tip leading-edge region moves downstream; limits the influence range of the horseshoe vortex near the suction surface; delays the generation of tip clearance leakage flow, which interacts with the tip clearance upper-passage vortex; and flow loss is reduced.

Key words: compressed air energy storage, axial turbine, bowed stator, optimiztion, flow mechanism

中图分类号: