1 |
LI T M, PEI H, PANG Z N, et al. A sequential Bayesian updated Wiener process model for remaining useful life prediction[J]. IEEE Access, 2019, 8: 5471-5480.
|
2 |
KHODADADI SADABADI K, JIN X, RIZZONI G. Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J]. Journal of Power Sources, 2021, 481: doi: 10.1016/j.jpowsour. 2020.228861.
|
3 |
GUHA A, PATRA A. Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(8): 1836-1849.
|
4 |
ZHANG H, MO Z L, WANG J Y, et al. Nonlinear-drifted fractional Brownian motion with multiple hidden state variables for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Reliability, 2020, 69(2): 768-780.
|
5 |
WANG D, YANG F F, ZHAO Y, et al. Prognostics of lithium-ion batteries based on state space modeling with heterogeneous noise variances[J]. Microelectronics Reliability, 2017, 75: 1-8.
|
6 |
WANG H Y, SONG W Q, ZIO E, et al. Remaining useful life prediction for lithium-ion batteries using fractional Brownian motion and Fruit-fly optimization algorithm[J]. Measurement, 2020, 161: doi: 10.1016/j.measurement.2020.107904.
|
7 |
张婷婷, 于明, 李宾, 等. 基于Wavelet降噪和支持向量机的锂离子电池容量预测研究[J]. 电工技术学报, 2020, 35(14): 3126-3136.
|
|
ZHANG T T, YU M, LI B, et al. Capacity prediction of lithium-ion batteries based on wavelet noise reduction and support vector machine[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3126-3136.
|
8 |
LI P H, ZHANG Z J, XIONG Q Y, et al. State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network[J]. Journal of Power Sources, 2020, 459: doi: 10.1016/j.jpowsour. 2020.228069.
|
9 |
李练兵, 祝亚尊, 田永嘉, 等. 基于Elman神经网络的锂离子电池RUL间接预测研究[J]. 电源技术, 2019, 43(6): 1027-1031.
|
|
LI L B, ZHU Y Z, TIAN Y J, et al. RUL indirect prediction of lithium-ion battery based on Elman neural network[J]. Chinese Journal of Power Sources, 2019, 43(6): 1027-1031.
|
10 |
LIU K L, SHANG Y L, OUYANG Q, et al. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2020, 68(4): 3170-3180.
|
11 |
REN L, DONG J B, WANG X K, et al. A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3478-3487.
|
12 |
WANG L M, PAN C F, LIU L, et al. On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis[J]. Applied Energy, 2016, 168: 465-472.
|
13 |
XU T T, PENG Z, WU L F. A novel data-driven method for predicting the circulating capacity of lithium-ion battery under random variable current[J]. Energy, 2021, 218: doi: 10.1016/j.energy.2020.119530.
|
14 |
郭永芳, 黄凯, 李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J]. 电工技术学报, 2019, 34(19): 3968-3978.
|
|
GUO Y F, HUANG K, LI Z G. Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 3968-3978.
|
15 |
李练兵, 季亮, 祝亚尊, 等. 等效循环电池组剩余使用寿命预测[J]. 工程科学学报, 2020, 42(6): 796-802.
|
|
LI L B, JI L, ZHU Y Z, et al. Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack[J]. Chinese Journal of Engineering, 2020, 42(6): 796-802.
|
16 |
HONKURA K, TAKAHASHI K, HORIBA T. Capacity-fading prediction of lithium-ion batteries based on discharge curves analysis[J]. Journal of Power Sources, 2011, 196(23): 10141-10147.
|
17 |
BLOOM I, JANSEN A N, ABRAHAM D P, et al. Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application[J]. Journal of Power Sources, 2005, 139(1/2): 295-303.
|
18 |
SAHA B, GOEBEL K. Battery data set[R]. NASA Ames Prognostics Data Repository, 2007.
|
19 |
郝雪玲. 锂离子电池健康状态多指标融合和剩余寿命预测方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2019.
|
|
HAO X L. Study on multi-health indicators fusion and remaining useful life prediction for lithium-ion batteries[D]. Harbin: Harbin University of Science and Technology, 2019.
|
20 |
ZHANG S Z, ZHAI B Y, GUO X, et al. Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.100951.
|
21 |
LI X Y, YUAN C G, WANG Z P. Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J]. Journal of Power Sources, 2020, 467: doi: 10.1016/j.jpowsour.2020.228358.
|
22 |
FONTGALLAND G, PEDRO H J G. Normality and correlation coefficient in estimation of insulators' spectral signature[J]. IEEE Signal Processing Letters, 2015, 22(8): 1175-1179.
|