1 |
SASAKI T, UKYO Y, NOVÁK P. Memory effect in a lithium-ion battery[J]. Nature Materials, 2013, 12(6): 569-575.
|
2 |
田万鹏, 陈标. 新能源汽车锂电池热管理系统热性能分析与优化控制研究[J]. 四川轻化工大学学报(自然科学版), 2021, 34(1): 56-62.
|
|
TIAN W P, CHEN B. Study on thermal performance analysis and optimal control of the thermal management system for new energy vehicle lithium battery[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2021, 34(1): 56-62.
|
3 |
杜光超, 郑莉莉, 张志超, 等. 圆柱形高镍三元锂离子电池高温热失控实验研究[J]. 储能科学与技术, 2020, 9(1): 249-256.
|
|
DU G C, ZHENG L L, ZHANG Z C, et al. Experimental study on high temperature thermal runaway of cylindrical high nickel ternary lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 249-256.
|
4 |
王海民, 王寓非, 胡峰. 石墨-石蜡复合相变材料的圆柱型动力电池组热管理性能[J]. 储能科学与技术, 2021, 10(1): 210-217.
|
|
WANG H M, WANG Y F, HU F. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2021, 10(1): 210-217.
|
5 |
饶中浩. 基于固液相变传热介质的动力电池热管理研究[D]. 广州: 华南理工大学, 2013.
|
|
RAO Z H. Research on power battery thermal management based on solid-liquid phase change heat transfer medium[D]. Guangzhou: South China University of Technology, 2013.
|
6 |
KANG D, LEE P Y, YOO K, et al. Internal thermal network model-based inner temperature distribution of high-power lithium-ion battery packs with different shapes for thermal management[J]. Journal of Energy Storage, 2020, 27: doi: 10.1016/j.est.2019. 101017.
|
7 |
WANG T, TSENG K J, ZHAO J Y, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J]. Applied Energy, 2014, 134: 229-238.
|
8 |
AMARAL C, VICENTE R, MARQUES P A A P, et al. Phase change materials and carbon nanostructures for thermal energy storage: A literature review[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1212-1228.
|
9 |
MORTAZAVI B, YANG H L, MOHEBBI F, et al. Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: A multiscale investigation[J]. Applied Energy, 2017, 202: 323-334.
|
10 |
LING Z Y, CHEN J J, FANG X M, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system[J]. Applied Energy, 2014, 121: 104-113.
|
11 |
刘业凤, 郑鹏飞, 言锦嘉, 等. 基于复合相变材料的电池组散热性能分析[J]. 电源技术, 2019, 43(11): 1792-1795.
|
|
LIU Y F, ZHENG P F, YAN J J, et al. Analysis of heat dissipation performance of battery pack based on composite phase change material[J]. Chinese Journal of Power Sources, 2019, 43(11): 1792-1795.
|
12 |
SAFDARI M, AHMADI R, SADEGHZADEH S. Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management[J]. Energy, 2020, 193: doi:10.1016/j.energy.2019.116840.
|
13 |
LING Z Y, CAO J H, ZHANG W B, et al. Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology[J]. Applied Energy, 2018, 228: 777-788.
|
14 |
ZHAO J T, LV P, RAO Z H. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack[J]. Experimental Thermal and Fluid Science, 2017, 82: 182-188.
|
15 |
WENG J W, YANG X Q, ZHANG G Q, et al. Optimization of the detailed factors in a phase-change-material module for battery thermal management[J]. International Journal of Heat and Mass Transfer, 2019, 138: 126-134.
|
16 |
JILTE R D, KUMAR R, AHMADI M H, et al. Battery thermal management system employing phase change material with cell-to-cell air cooling[J]. Applied Thermal Engineering, 2019, 161: doi: 10.1016/j.applthermaleng.2019.114199.
|
17 |
QIN P, LIAO M R, ZHANG D F, et al. Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material[J]. Energy Conversion and Management, 2019, 195: 1371-1381.
|
18 |
杜双龙, 赖延清, 贾明, 等. 圆柱锂离子动力电池电热特性仿真[J]. 中国有色金属学报, 2014, 24(7): 1823-1830.
|
|
DU S L, LAI Y Q, JIA M, et al. Electrothermal characteristics simulation of cylindrical automotive lithium-ion battery[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(7): 1823-1830.
|
19 |
陈红, 赵树男. 圆柱形锂电池组风冷散热性能仿真研究与优化[J]. 环境技术, 2021, 39(1): 192-198.
|
|
CHEN H, ZHAO S N. Simulation research and optimization on air cooling heat dissipation performance for cylindrical lithium-ion battery packs[J]. Environmental Technology, 2021, 39(1): 192-198.
|
20 |
WU X Y, ZHU Z H, ZHANG H Y, et al. Structural optimization of light-weight battery module based on hybrid liquid cooling with high latent heat PCM[J]. International Journal of Heat and Mass Transfer, 2020, 163: doi: 10.1016/j.ijheatmasstransfer.2020.120495.
|