1 |
VOSKANYAN A A, ABRAMCHUK M, NAVROTSKY A. Entropy stabilization of TiO2-Nb2O5 Wadsley-Roth shear phases and their prospects for lithium-ion battery anode materials[J]. Chemistry of Materials, 2020, 32(12): 5301-5308.
|
2 |
YI T F, SARI H M K, LI X Z, et al. A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors[J]. Nano Energy, 2021, 85: doi: 10.1016/j.nanoen.2021.105955.
|
3 |
任思佳, 田雷武, 邵钦君, 等. 助熔剂法制备单晶LiNi0.8Co0.1Mn0.1O2正极材料[J]. 储能科学与技术, 2020, 9(6): 1702-1713.
|
|
REN S J, TIAN L W, SHAO Q J, et al. Synthesis of single-crystal LiNi0.8Co0.1Mn0.1O2 by flux method[J]. Energy Storage Science and Technology, 2020, 9(6): 1702-1713.
|
4 |
LIM E, KIM H, JO C, et al. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode[J]. ACS Nano, 2014, 8(9): 8968-8978.
|
5 |
QIN L, LIU Y, ZHU S H, et al. Formation and operating mechanisms of single-crystalline perovskite NaNbO3 nanocubes/few-layered Nb2CTx MXene hybrids towards Li-ion capacitors[J]. Journal of Materials Chemistry A, 2021, 9(36): 20405-20416.
|
6 |
YAN D, ZHANG J, XIONG D B, et al. Boosting chem-insertion and phys-adsorption in S/N co-doped porous carbon nanospheres for high-performance symmetric Li-ion capacitors[J]. Journal of Materials Chemistry A, 2020, 8(23): 11529-11537.
|
7 |
MENG J S, HE Q, XU L H, et al. Identification of phase control of carbon-confined Nb2O5 nanoparticles toward high-performance lithium storage[J]. Advanced Energy Materials, 2019, 9(18): doi: 10.1002/aenm.201802695.
|
8 |
WANG X, YANG Z, MEI F, et al. One pot synthesis of Sb2O3/reduced graphene oxide composite anode material for sodium ion batteries[J]. Materials Letters, 2020, 280: doi: 10.1016/j.matlet.2020.128565.
|
9 |
SHAO R, NIU J, ZHU F, et al. A facile and versatile strategy towards high-performance Si anodes for Li-ion capacitors: Concomitant conductive network construction and dual-interfacial engineering[J]. Nano Energy, 2019, 63: doi: 10.1016/j.nanoen.2019.06.020.
|
10 |
SENNU P, MADHAVI S, ARAVINDAN V, et al. Co3O4 nanosheets as battery-type electrode for high-energy Li-ion capacitors: A sustained Li-storage via conversion pathway[J]. ACS Nano, 2020, 14(8): 10648-10654.
|
11 |
DIVYA M L, NATARAJAN S, LEE Y S, et al. Achieving high-energy dual carbon Li-ion capacitors with unique low-and high-temperature performance from spent Li-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(9): 4950-4959.
|
12 |
BI R Y, XU N, REN H, et al. A hollow multi-shelled structure for charge transport and active sites in lithium-ion capacitors[J]. Angewandte Chemie International Edition, 2020, 59(12): 4865-4868.
|
13 |
XU Q L, DING R, SHI W, et al. Perovskite KNi0.1Co0.9F3 as a pseudocapacitive conversion anode for high-performance nonaqueous Li-ion capacitors and dual-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(14): 8315-8326.
|
14 |
DENG B H, LEI T Y, ZHU W H, et al. In-plane assembled orthorhombic Nb2O5 nanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors[J]. Advanced Functional Materials, 2018, 28(1): doi: 10.1002/adfm.201704330.
|
15 |
HAN X Y, RUSSO P A, GOUBARD-BRETESCHÉ N, et al. Exploiting the condensation reactions of acetophenone to engineer carbon-encapsulated Nb2O5 nanocrystals for high-performance Li and Na energy storage systems[J]. Advanced Energy Materials, 2019, 9(42): doi: 10.1002/aenm.201902813.
|
16 |
CHEONG J Y, KIM C, JUNG J W, et al. Formation of a surficial bifunctional nanolayer on Nb2O5 for ultrastable electrodes for lithium-ion battery[J]. Small, 2017, 13(19): doi: 10.1002/smll.201603610.
|
17 |
FU S D, YU Q, LIU Z H, et al. Yolk-shell Nb2O5 microspheres as intercalation pseudocapacitive anode materials for high-energy Li-ion capacitors[J]. Journal of Materials Chemistry A, 2019, 7(18): 11234-11240.
|
18 |
YAN X H, LI T B, XIONG Y G, et al. Synchronized ion and electron transfer in a blue T-Nb2O5-x with solid-solution-like process for fast and high volumetric charge storage[J]. Energy Storage Materials, 2021, 36: 213-221.
|
19 |
LI N, LAN X W, WANG L B, et al. Precisely tunable T-Nb2O5 nanotubes via atomic layer deposition for fast-charging lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16445-16453.
|
20 |
SHEN S H, ZHANG S Z, CAO X, et al. Popcorn-like niobium oxide with cloned hierarchical architecture as advanced anode for solid-state lithium ion batteries[J]. Energy Storage Materials, 2020, 25: 695-701.
|
21 |
CHEN J L, WANG H, ZHANG X X, et al. 2D ultrathin nanosheet-assembled Nb2O5 microflowers for lithium ion batteries[J]. Materials Letters, 2018, 227: 112-115.
|
22 |
SONG Z H, LI H, LIU W, et al. Ultrafast and stable Li-(de)intercalation in a large single crystal H-Nb2O5 anode via optimizing the homogeneity of electron and ion transport[J]. Advanced Materials, 2020, 32(22): doi: 10.1002/adma.202001001.
|
23 |
QIN L, LIU Y, XU S Y, et al. In-plane assembled single-crystalline T-Nb2O5 nanorods derived from few-layered Nb2CTx MXene nanosheets for advanced Li-ion capacitors[J]. Small Methods, 2020, 4(12): doi: 10.1002/smtd.202000630.
|
24 |
NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. Journal of the American Chemical Society, 2013, 135(43): 15966-15969.
|
25 |
CAO J M, SUN Z Q, LI J Z, et al. Microbe-assisted assembly of Ti3C2Tx MXene on fungi-derived nanoribbon heterostructures for ultrastable sodium and potassium ion storage[J]. ACS Nano, 2021, 15(2): 3423-3433.
|
26 |
LIAN P C, DONG Y F, WU Z S, et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries[J]. Nano Energy, 2017, 40: 1-8.
|
27 |
SONG H, FU J J, DING K, et al. Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors[J]. Journal of Power Sources, 2016, 328: 599-606.
|
28 |
OUENDI S, ARICO C, BLANCHARD F, et al. Synthesis of T-Nb2O5 thin-films deposited by atomic layer deposition for miniaturized electrochemical energy storage devices[J]. Energy Storage Materials, 2019, 16: 581-588.
|
29 |
LIU F F, CHENG X L, XU R, et al. Binding sulfur-doped Nb2O5Hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage[J]. Advanced Functional Materials, 2018, 28(18): doi: 10.1002/adfm.201800394.
|
30 |
WANG Q, JIA Z Y, LI L G, et al. Coupling niobia nanorods with a multicomponent carbon network for high power lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44196-44203.
|
31 |
YANG H, XU R, GONG Y, et al. An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage[J]. Nano Energy, 2018, 48: 448-455.
|
32 |
VICENTINI R, NUNES W, FREITAS B G A, et al. Niobium pentoxide nanoparticles @ multi-walled carbon nanotubes and activated carbon composite material as electrodes for electrochemical capacitors[J]. Energy Storage Materials, 2019, 22: 311-322.
|