1 |
VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3: doi: 10.1038/natrevmats.2018.13.
|
2 |
LIU Y Y, MERINOV B V, GODDARD W A 3rd. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(14): 3735-3739.
|
3 |
LI C H, SUN Y, WU Q J, et al. A novel design strategy of a practical carbon anode material from a single lignin-based surfactant source for sodium-ion batteries[J]. Chemical Communications (Cambridge, England), 2020, 56(45): 6078-6081.
|
4 |
LI Y, YUAN Y F, BAI Y, et al. Insights into the Na+ storage mechanism of phosphorus-functionalized hard carbon as ultrahigh capacity anodes[J]. Advanced Energy Materials, 2018, 8(18): doi: 10.1002/aenm.201702781.
|
5 |
STEVENS D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4): 1271.
|
6 |
STEVENS D A, DAHN J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society, 2001, 148(8): doi: 10.1149/1.1379565.
|
7 |
ILIC I K, SCHUTJAJEW K, ZHANG W Y, et al. Changes of porosity of hard carbons during mechanical treatment and the relevance for sodium-ion anodes[J]. Carbon, 2022, 186: 55-63.
|
8 |
QIU S, XIAO L F, SUSHKO M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): doi: 10.1002/aenm.201700403.
|
9 |
CAO Y L, XIAO L F, SUSHKO M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783-3787.
|
10 |
金前争. 硬碳电极储钠机理与构效关系研究[D]. 武汉: 华中科技大学, 2020.
|
|
JIN Q Z. The study on sodium storage mechanisms and structure-activity relationships of hard carbon electrode[D]. Wuhan: Huazhong University of Science and Technology, 2020.
|
11 |
WANG K, XU Y B, LI Y, et al. Sodium storage in hard carbon with curved graphene platelets as the basic structural units[J]. Journal of Materials Chemistry A, 2019, 7(7): 3327-3335.
|
12 |
ALVIN S, CAHYADI H S, HWANG J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Advanced Energy Materials, 2020, 10(20): doi: 10.1002/aenm.202000283.
|
13 |
CHEN X Y, FANG Y L, TIAN J Y, et al. Electrochemical insight into the sodium-ion storage mechanism on a hard carbon anode[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18914-18922.
|
14 |
AU H, ALPTEKIN H, JENSEN A C S, et al. A revised mechanistic model for sodium insertion in hard carbons[J]. Energy & Environmental Science, 2020, 13(10): 3469-3479.
|
15 |
CAI C C, CHEN Y A, HU P, et al. Regulating the interlayer spacings of hard carbon nanofibers enables enhanced pore filling sodium storage[J]. Small, 2022, 18(6): doi: 10.1002/smll.202105303.
|
16 |
CHEN X Y, TIAN J Y, LI P, et al. An overall understanding of sodium storage behaviors in hard carbons by an "adsorption-intercalation/filling" hybrid mechanism[J]. Advanced Energy Materials, 2022, 12(24): doi: 10.1002/aenm.202200886.
|
17 |
JIANG N, CHEN L, JIANG H, et al. Introducing the solvent co-intercalation mechanism for hard carbon with ultrafast sodium storage[J]. Small, 2022, 18(15): doi: 10.1002/smll.202108092.
|
18 |
ESCHER I, A FERRERO G, GOKTAS M, et al. In situ (operando) electrochemical dilatometry as a method to distinguish charge storage mechanisms and metal plating processes for sodium and lithium ions in hard carbon battery electrodes[J]. Advanced Materials Interfaces, 2022, 9(8): doi: 10.1002/admi.202100596.
|
19 |
CHEN J, HU T, ZOU Z, et al. Pre-doping iodine to restrain formation of low-active graphitic-N in hard carbon for significantly boosting sodium storage performance[J]. Carbon, 2022, 186: 193-204.
|
20 |
SENTHIL C, PARK J W, SHAJI N, et al. Biomass seaweed-derived nitrogen self-doped porous carbon anodes for sodium-ion batteries: Insights into the structure and electrochemical activity[J]. Journal of Energy Chemistry, 2022, 64: 286-295.
|
21 |
SUN Y, WU Q J, WANG Y D, et al. Protein-derived 3D amorphous carbon with N, O doping as high rate and long lifespan anode for potassium ion batteries[J]. Journal of Power Sources, 2021, 512: doi: 10.1016/j.jpowsour.2021.230530.
|
22 |
PEI Z X, MENG Q Q, WEI L, et al. Toward efficient and high rate sodium-ion storage: A new insight from dopant-defect interplay in textured carbon anode materials[J]. Energy Storage Materials, 2020, 28: 55-63.
|
23 |
FAN L L, ZHANG X, FAN L P, et al. Boosting the high capacitance-controlled capacity of hard carbon by using surface oxygen functional groups for fast and stable sodium storage[J]. ACS Applied Energy Materials, 2021, 4(10): 11436-11446.
|
24 |
XING C, YANG D H, ZHANG Y, et al. Semi-closed synthesis of nitrogen and oxygen Co-doped mesoporous carbon for selective aqueous oxidation[J]. Green Energy & Environment, 2022, 7(1): 43-52.
|
25 |
CHEN C, HUANG Y, MENG Z Y, et al. Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage[J]. Journal of Materials Science & Technology, 2021, 76: 11-19.
|
26 |
XIE F, NIU Y S, ZHANG Q Q, et al. Screening heteroatom configurations for reversible sloping capacity promises high-power Na-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(11): doi: 10.1002/anie.202116394.
|
27 |
WU Z R, ZOU J, ZHANG Y, et al. Lignin-derived hard carbon anode for potassium-ion batteries: Interplay among lignin molecular weight, material structures, and storage mechanisms[J]. Chemical Engineering Journal, 2022, 427: doi: 10.1016/j.cej.2021.131547.
|
28 |
VELDEVI T, RAGHU S, KALAIVANI R A, et al. Waste tire derived carbon as potential anode for lithium-ion batteries[J]. Chemosphere, 2022, 288: doi: 10.1016/j.chemosphere.2021.132438.
|
29 |
YIN X P, ZHAO Y F, WANG X, et al. Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage[J]. Small, 2022, 18(5): doi: 10.1002/smll.202105568.
|
30 |
TONNOIR H, HUO D, CANEVESI R L S, et al. Tannin-based hard carbons as high-performance anode materials for sodium-ion batteries[J]. Materials Today Chemistry, 2022, 23: doi: 10.1016/j.mtchem.2021.100614.
|
31 |
LI Y Q, LU Y X, MENG Q S, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance[J]. Advanced Energy Materials, 2019, 9(48): doi: 10.1002/aenm.201902852.
|
32 |
LI Y M, WU F F, XIONG S L. Embedding ZnSe nanoparticles in a porous nitrogen-doped carbon framework for efficient sodium storage[J]. Electrochimica Acta, 2019, 296: 582-589.
|
33 |
YOUN Y, GAO B, KAMIYAMA A, et al. Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery[J]. Npj Computational Materials, 2021, 7: 48.
|
34 |
KAMIYAMA A, KUBOTA K, IGARASHI D, et al. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery[J]. Angewandte Chemie, 2021, 133(10): 5174-5180.
|
35 |
XIE F, XU Z, JENSEN A C S, et al. Hard-soft carbon composite anodes with synergistic sodium storage performance[J]. Advanced Functional Materials, 2019, 29(24): doi: 10.1002/adfm.201901072.
|
36 |
HE X X, ZHAO J H, LAI W H, et al. Soft-carbon-coated, free-standing, low-defect, hard-carbon anode to achieve a 94% initial coulombic efficiency for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44358-44368.
|
37 |
LU H Y, CHEN X Y, JIA Y L, et al. Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries[J]. Nano Energy, 2019, 64: doi: 10.1016/j.nanoen.2019.103903.
|
38 |
WANG C C, SU W L. Ultrathin artificial solid electrolyte interface layer-coated biomass-derived hard carbon as an anode for sodium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(1): 1052-1064.
|
39 |
SEH Z W, SUN J, SUN Y M, et al. A highly reversible room-temperature sodium metal anode[J]. ACS Central Science, 2015, 1(8): 449-455.
|
40 |
XIAO B W, SOTO F A, GU M, et al. Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes[J]. Advanced Energy Materials, 2018, 8(24): doi: 10.1002/aenm.201801441.
|
41 |
HIRSH H S, SAYAHPOUR B, SHEN A, et al. Role of electrolyte in stabilizing hard carbon as an anode for rechargeable sodium-ion batteries with long cycle life[J]. Energy Storage Materials, 2021, 42: 78-87.
|
42 |
DONG R Q, ZHENG L M, BAI Y, et al. Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes[J]. Advanced Materials, 2021, 33(36): doi: 10.1002/adma.202008810.
|
43 |
LI Y W, CHEN S M, XU S Y, et al. Impact of electrolyte salts on Na storage performance for high-surface-area carbon anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48745-48752.
|
44 |
ZHANG J, WANG D W, LV W, et al. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase [J]. Energy Environ Sci, 2017, 10(1): 370-376.
|
45 |
CHEN Y, ZHAO S, YU Y Y, et al. A general synthesis of mesoporous hollow carbon spheres with extraordinary sodium storage kinetics by engineering solvation structure[J]. Small, 2022, 18(10): doi: 10.1002/smll.202106513.
|
46 |
HU Y S, LU Y X. The mystery of electrolyte concentration: From superhigh to ultralow[J]. ACS Energy Letters, 2020, 5(11): 3633-3636.
|
47 |
JIN Y, XU Y B, LE P M L, et al. Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases[J]. ACS Energy Letters, 2020, 5(10): 3212-3220.
|
48 |
LI Y Q, YANG Y, LU Y X, et al. Ultralow-concentration electrolyte for Na-ion batteries[J]. ACS Energy Letters, 2020, 5(4): 1156-1158.
|
49 |
FONDARD J, IRISARRI E, COURRÈGES C, et al. SEI composition on hard carbon in Na-ion batteries after long cycling: Influence of salts (NaPF6, NaTFSI) and additives (FEC, DMCF)[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab75fd.
|
50 |
YOON S U, KIM H, JIN H J, et al. Effects of fluoroethylene carbonate-induced solid-electrolyte-interface layers on carbon-based anode materials for potassium ion batteries[J]. Applied Surface Science, 2021, 547: doi: 10.1016/j.apsusc.2021.149193.
|
51 |
BAI P X, HAN X P, HE Y W, et al. Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries[J]. Energy Storage Materials, 2020, 25: 324-333.
|