储能科学与技术 ›› 2022, Vol. 11 ›› Issue (11): 3497-3509.doi: 10.19799/j.cnki.2095-4239.2022.0233

• 储能材料与器件 • 上一篇    下一篇

钠离子电池硬碳负极材料研究进展

刘飞1,2,3(), 赵培文1,2,3, 赵经香1,2,3, 孙贤伟1,2,3, 李苗苗1,2,3, 王敬豪1,2,3, 尹延鑫1,2,3, 戴作强1,2,3(), 郑莉莉1,2,3   

  1. 1.青岛大学机电工程学院
    2.青岛大学动力集成及储能系统工程技术中心
    3.电动汽车智能化动力集成技术国家地方联合工程技术中心(青岛),山东 青岛 266071
  • 收稿日期:2022-05-05 修回日期:2022-06-08 出版日期:2022-11-05 发布日期:2022-11-09
  • 通讯作者: 戴作强 E-mail:liufeicx0521@163.com;daizuoqiangqdu@163.com
  • 作者简介:刘飞(1997—),男,硕士研究生,主要研究方向为新能源电动汽车,E-mail:liufeicx0521@163.com

Research progress of hard carbon anode materials for sodium ion batteries

Fei LIU1,2,3(), Peiwen ZHAO1,2,3, Jingxiang ZHAO1,2,3, Xianwei SUN1,2,3, Miaomiao LI1,2,3, Jinghao WANG1,2,3, Yanxin YIN1,2,3, Zuoqiang DAI1,2,3(), Lili ZHENG1,2,3   

  1. 1.College of Mechanical and Electrical Engineering, Qingdao University
    2.Engineering Technology Center of Power Integration and Energy Storage System
    3.National and Local Joint Engineering Technology Center for Intelligent Power Integration Technology of Electric Vehicles (Qingdao), Qingdao 266071, Shandong, China
  • Received:2022-05-05 Revised:2022-06-08 Online:2022-11-05 Published:2022-11-09
  • Contact: Zuoqiang DAI E-mail:liufeicx0521@163.com;daizuoqiangqdu@163.com

摘要:

随着高性能电极材料的开发和储钠机理的研究,钠离子电池的电化学性能得到极大的提升。硬碳作为公认的最成熟和最具商业化潜质的负极材料,仍面临着首次库仑效率低、倍率性能较差等问题。同时,科研人员投入巨大精力深入研究硬碳储钠机理,探索提高性能和降低成本的合成方法。但对于储钠机理仍存在分歧,尤其对低压平台区的储钠机制有较大争议。本工作通过对近期文献的综合分析,基于硬碳材料的嵌入、吸附及纳米孔填充三种不同储钠过程,着重介绍了“嵌入-吸附”“吸附-嵌入”和其他多种形式的复合储钠机理。随后,在深入了解硬碳材料储钠机理的基础上,分析了比表面积、孔隙、缺陷、层间距和官能团等对硬碳负极材料倍率性能和首次库仑效率的影响。同时介绍了结构优化和涂覆涂层方法表面改性对改善硬碳负极材料倍率性能和首次库仑效率的影响。为了促进硬碳的实际应用,阐述了电解质优化对ICE膜性能改善及倍率性能的影响。综合分析表明,硬碳材料改性及电解液优化,有望同时实现高倍率性能、高首次库仑效率和循环稳定性。

关键词: 钠离子电池, 硬碳, 负极材料, 首次库仑效率, 倍率性能, 储钠机理

Abstract:

With the development of high-performance electrode materials and the study of the mechanism, the electrochemical performance of sodium-ion batteries has been greatly improved. Hard carbon has become recognized as the most mature and commercialized anode material. However, it still faces problems such as low initial coulomb efficiency and poor rate capability. At the same time, great efforts have been devoted to in-depth research on the mechanism of sodium storage in hard carbons, and to explore synthetic methods to improve performance and reduce costs. However, there are still disagreements on the sodium storage mechanism, especially the sodium storage mechanism in the plateau region. Through the study of recent literature, based on the three different sodium storage processes of hard carbon material intercalation, adsorption and nanopore filling, the "intercalation-adsorption", "adsorption-intercalation" and other various forms of composite sodium storage mechanisms are emphatically introduced. Then, the effects of specific surface area, pores, defects, interlayer spacing and functional groups on the rate capability and initial Coulomb efficiency of hard carbon anode materials were analyzed based on the in-depth understanding of the sodium storage mechanism of hard carbon materials. At the same time, the effects of structure optimization and surface modification of coating method on improving the rate performance and initial coulombic efficiency of hard carbon anode materials are introduced. In order to promote the practical application of hard carbon, the effect of electrolyte optimization on improve the performance of ICE and rate capability of hard carbon is expounded. Comprehensive analysis shows that hard carbon material modification and electrolyte optimization are promising to achieve high rate capability, high initial coulombic efficiency and cycle stability at the same time.

Key words: sodium-ion battery, hard carbon, anode material, initial coulombic efficiency, rate capability, sodium storage mechanism

中图分类号: