储能科学与技术 ›› 2022, Vol. 11 ›› Issue (2): 487-502.doi: 10.19799/j.cnki.2095-4239.2021.0409
宋岚(), 熊若愚, 宋华雄, 谭鹏辉, 张云(), 周华民
收稿日期:
2021-08-09
修回日期:
2021-09-12
出版日期:
2022-02-05
发布日期:
2022-02-08
通讯作者:
张云
E-mail:slan_song@foxmail.com;marblezy@hust.edu.cn
作者简介:
宋岚(1997—),女,硕士研究生,研究方向为锂离子电池电极结构与工艺,E-mail:基金资助:
Lan SONG(), Ruoyu XIONG, Huaxiong SONG, Penghui TAN, Yun ZHANG(), Huamin ZHOU
Received:
2021-08-09
Revised:
2021-09-12
Online:
2022-02-05
Published:
2022-02-08
Contact:
Yun ZHANG
E-mail:slan_song@foxmail.com;marblezy@hust.edu.cn
摘要:
动力电池高续航、长循环、快速充电和高安全性等严苛的使用要求推动着锂离子电池技术的革新。然而,这也使得电池内部从颗粒材料到电芯各层级的均匀性问题变得突出,成为决定电池综合性能的关键因素。研究锂离子电池多尺度的非均匀性成因及改善策略,是目前电池制造与电池管理中亟待解决的重要问题。本概述系统地总结了锂离子电池材料颗粒、电极微结构、极片平面以及电芯单体的非均匀特征对电池电化学均匀性的影响以及在电池循环过程中的演化规律,并重点归纳出非均匀性通过内在的并联电学结构损伤电池性能的作用机制。最后,针对各尺度下的非均匀问题提出了具体的改善措施。
中图分类号:
宋岚, 熊若愚, 宋华雄, 谭鹏辉, 张云, 周华民. 锂离子电池多尺度非均匀性概述[J]. 储能科学与技术, 2022, 11(2): 487-502.
Lan SONG, Ruoyu XIONG, Huaxiong SONG, Penghui TAN, Yun ZHANG, Huamin ZHOU. Multiscale nonuniformity of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(2): 487-502.
1 | 巫湘坤, 詹秋设, 张兰, 等. 锂电池极片微结构优化及可控制备技术进展[J]. 应用化学, 2018, 35(9): 1076-1092. |
WU X K, ZHAN Q S, ZHANG L, et al. Progress on microstructural optimization and controllable preparation technology for lithium ion battery electrodes[J]. Chinese Journal of Applied Chemistry, 2018, 35(9): 1076-1092. | |
2 | 胡轲. 大容量储能系统电池管理系统均衡技术研究[J]. 南方能源建设, 2018, 5(1): 40-44. |
HU K. Research on balancing technology of battery management system of high-capacity energy storage system[J]. Southern Energy Construction, 2018, 5(1): 40-44. | |
3 | VOGEL J E,FOROUZAN M M,HARDY E E,et al. Electrode microstructure controls localized electronic impedance in Li-ion batteries[J]. Electrochimica Acta, 2019, 297: 820-825. |
4 | CHUNG D W, SHEARING P R, BRANDON N P, et al. Particle size polydispersity in Li-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(3): A422-A430. |
5 | 安富强, 张剑波, 黄俊, 等. 电动汽车用锂离子电池制备及其一致性演变分析[J]. 材料热处理学报, 2015, 36(4): 239-248. |
AN F Q, ZHANG J B, HUANG J, et al. Production of lithium-ion battery and uniformity evolution analysis[J]. Transactions of Materials and Heat Treatment, 2015, 36(4): 239-248. | |
6 | KURATANI K, ISHIBASHI K, KOMODA Y, et al. Controlling of dispersion state of particles in slurry and electrochemical properties of electrodes[J]. Journal of the Electrochemical Society, 2019, 166(4): A501-A506. |
7 | HENDRICKS C, WILLIARD N, MATHEW S, et al. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries[J]. Journal of Power Sources, 2015, 297: 113-120. |
8 | BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386. |
9 | REN D S, FENG X N, LU L G, et al. Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions[J]. Applied Energy, 2019, 250: 323-332. |
10 | KWADE A, HASELRIEDER W, LEITHOFF R, et al. Current status and challenges for automotive battery production technologies[J]. Nature Energy, 2018, 3(4): 290-300. |
11 | ABBOUD A W, DUFEK E J, LIAW B. Communication—Implications of local current density variations on lithium plating affected by cathode particle size[J]. Journal of the Electrochemical Society, 2019, 166(4): A667-A669. |
12 | OUYANG M G, FENG X N, HAN X B, et al. A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery[J]. Applied Energy, 2016, 165: 48-59. |
13 | OMAR N, MONEM M A, FIROUZ Y, et al. Lithium iron phosphate based battery—Assessment of the aging parameters and development of cycle life model[J]. Applied Energy, 2014, 113: 1575-1585. |
14 | ANSEÁN D, DUBARRY M, DEVIE A, et al. Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging[J]. Journal of Power Sources, 2016, 321: 201-209. |
15 | WU M S, LIN C Y, WANG Y Y, et al. Numerical simulation for the discharge behaviors of batteries in series and/or parallel-connected battery pack[J]. Electrochimica Acta, 2006, 52(3): 1349-1357. |
16 | MIYATAKE S, SUSUKI Y, HIKIHARA T, et al. Discharge characteristics of multicell lithium-ion battery with nonuniform cells[J]. Journal of Power Sources, 2013, 241: 736-743. |
17 | BRUEN T, MARCO J. Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system[J]. Journal of Power Sources, 2016, 310: 91-101. |
18 | FOROUZAN M M, MAZZEO B A, WHEELER D R. Modeling the effects of electrode microstructural heterogeneities on Li-ion battery performance and lifetime[J]. Journal of the Electrochemical Society, 2018, 165(10): A2127-A2144. |
19 | FENG F, HU X S, HU L, et al. Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 102-113. |
20 | YANG C F, WANG X Y, FANG Q H, et al. An online SOC and capacity estimation method for aged lithium-ion battery pack considering cell inconsistency[J]. Journal of Energy Storage, 2020, 29: doi: 10.1016/j.est.2020.101250. |
21 | LYU J, SONG W J, LIN S L, et al. Influence of equalization on LiFePO4 battery inconsistency[J]. International Journal of Energy Research, 2017, 41(8): 1171-1181. |
22 | 王莉, 谢乐琼, 张干, 等. 锂离子电池一致性筛选研究进展[J]. 储能科学与技术, 2018, 7(2): 194-202. |
WANG L, XIE L Q, ZHANG G, et al. Research progress in the consistency screening of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(2): 194-202. | |
23 | LAI X, JIANG C, ZHENG Y J, et al. A novel composite equalizer based on an additional cell for series-connected lithium-ion cells[J]. Electronics, 2018, 7(12): 366. |
24 | NANDA J, REMILLARD J, O'NEILL A, et al. Local state-of-charge mapping of lithium-ion battery electrodes[J]. Advanced Functional Materials, 2011, 21(17): 3282-3290. |
25 | MASTALI M M, FARHAD S, FARKHONDEH M, et al. Simplified electrochemical multi-particle model for LiFePO4 cathodes in lithium-ion batteries[J]. Journal of Power Sources, 2015, 275: 633-643. |
26 | AGUBRA V, FERGUS J. Lithium ion battery anode aging mechanisms[J]. Materials (Basel, Switzerland), 2013, 6(4): 1310-1325. |
27 | RÖDER F, SONNTAG S, SCHRÖDER D, et al. Simulating the impact of particle size distribution on the performance of graphite electrodes in lithium-ion batteries[J]. Energy Technology, 2016, 4(12): 1588-1597. |
28 | LEI J L, MCLARNON F, KOSTECKI R. In situ Raman microscopy of individual LiNi0.8Co0.15Al0.05O2 particles in a Li-ion battery composite cathode[J]. The Journal of Physical Chemistry B, 2005, 109(2): 952-957. |
29 | TSAI P C, WEN B H, WOLFMAN M, et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy & Environmental Science, 2018, 11(4): 860-871. |
30 | LEE H, JO E, CHUNG K Y, et al. In-depth TEM investigation on structural inhomogeneity within a primary LixNi0.835Co0.15Al0.015O2 particle: Origin of capacity decay during high-rate discharge[J]. Angewandte Chemie International Edition, 2020, 59(6): 2385-2391. |
31 | YAN B, LIM C, YIN L L, et al. Three dimensional simulation of galvanostatic discharge of LiCoO2Cathode based on X-ray nano-CT images[J]. Journal of the Electrochemical Society, 2012, 159(10): A1604-A1614. |
32 | TIAN C X, XU Y H, NORDLUND D, et al. Charge heterogeneity and surface chemistry in polycrystalline cathode materials[J]. Joule, 2018, 2(3): 464-477. |
33 | ZHENG H H, YANG R Z, LIU G, et al. Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode[J]. The Journal of Physical Chemistry C, 2012, 116(7): 4875-4882. |
34 | COOPER S J, EASTWOOD D S, GELB J, et al. Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries[J]. Journal of Power Sources, 2014, 247: 1033-1039. |
35 | SHEARING P R, HOWARD L E, JØRGENSEN P S, et al. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery[J]. Electrochemistry Communications, 2010, 12(3): 374-377. |
36 | MÜLLER S, ELLER J, EBNER M, et al. Quantifying inhomogeneity of lithium ion battery electrodes and its influence on electrochemical performance[J]. Journal of the Electrochemical Society, 2018, 165(2): A339-A344. |
37 | KENNEY B, DARCOVICH K, MACNEIL D D, et al. Modelling the impact of variations in electrode manufacturing on lithium-ion battery modules[J]. Journal of Power Sources, 2012, 213: 391-401. |
38 | MÜLLER M, PFAFFMANN L, JAISER S, et al. Investigation of binder distribution in graphite anodes for lithium-ion batteries[J]. Journal of Power Sources, 2017, 340: 1-5. |
39 | KEHRWALD D, SHEARING P R, BRANDON N P, et al. Local tortuosity inhomogeneities in a lithium battery composite electrode[J]. Journal of the Electrochemical Society, 2011, 158(12): A1393. |
40 | MAIRE P, EVANS A, KAISER H, et al. Colorimetric determination of lithium content in electrodes of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2008, 155(11): A862. |
41 | LIU J, KUNZ M, CHEN K, et al. Visualization of charge distribution in a lithium battery electrode[J]. The Journal of Physical Chemistry Letters, 2010, 1(14): 2120-2123. |
42 | NG S H, MANTIA F, NOVÁK P. A multiple working electrode for electrochemical cells: A tool for current density distribution studies[J]. Angewandte Chemie International Edition, 2009, 48(3): 528-532. |
43 | ZHANG G S, SHAFFER C E, WANG C Y, et al. In-situ measurement of current distribution in a Li-ion cell[J]. Journal of the Electrochemical Society, 2013, 160(4): A610-A615. |
44 | LEE C Y, LEE S J, TANG M S, et al. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors[J]. Sensors (Basel, Switzerland), 2011, 11(10): 9942-9950. |
45 | FORGEZ C, VINH D D, FRIEDRICH G, et al. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery[J]. Journal of Power Sources, 2010, 195(9): 2961-2968. |
46 | 罗雨, 王耀玲, 李丽华, 等. 锂电池制片工艺对电池一致性的影响[J]. 电源技术, 2013, 37(10): 1757-1759. |
LUO Y, WANG Y L, LI L H, et al. Influence of preparation techniques upon uniformity of lithium-ion batteries[J]. Chinese Journal of Power Sources, 2013, 37(10): 1757-1759. | |
47 | ETIEMBLE A, BESNARD N, BONNIN A, et al. Multiscale morphological characterization of process induced heterogeneities in blended positive electrodes for lithium-ion batteries[J]. Journal of Materials Science, 2017, 52(7): 3576-3596. |
48 | 宋华雄, 张云, 宋岚, 等. 激光在线测厚振动分析与精度优化[J]. 半导体光电, 2021, 42(1): 110-115. |
SONG H X, ZHANG Y, SONG L, et al. Vibration analysis and precision optimization of laser online thickness measurement[J]. Semiconductor Optoelectronics, 2021, 42(1): 110-115. | |
49 | WANG L M, CHENG Y, ZHAO X L. Influence of connecting plate resistance upon LiFePO4 battery performance[J]. Applied Energy, 2015, 147: 353-360. |
50 | CAI L, AN K, FENG Z L, et al. In-situ observation of inhomogeneous degradation in large format Li-ion cells by neutron diffraction[J]. Journal of Power Sources, 2013, 236: 163-168. |
51 | DUBARRY M, VUILLAUME N, LIAW B Y. Origins and accommodation of cell variations in Li-ion battery pack modeling[J]. International Journal of Energy Research, 2010, 34(2): 216-231. |
52 | 李波, 张永生, 唐小晴. 电池组一致性影响因素分析[J]. 电池, 2019, 49(4): 312-315. |
LI B, ZHANG Y S, TANG X Q. Analysis of factors affecting for battery pack consistency[J]. Battery Bimonthly, 2019, 49(4): 312-315. | |
53 | JIANG J C, ZHANG Y R, SHI W, et al. An analysis of optimized series and parallel method for traction lithium-ion batteries[C]//2014 International Conference on Intelligent Green Building and Smart Grid (IGBSG). April 23-25, 2014, Taipei, Taiwan, China. IEEE, 2014: 1-7. |
54 | 黄俊, 安富强, 王浩然, 等. 电动汽车用锂离子电池的一致性及分选方法[C]//第一届全国储能科学与技术大会摘要集. 上海, 2014: 214-216. |
55 | 杨帆. 锂离子电池组不一致性及其弥补措施[J]. 汽车电器, 2014(5): 37-40. |
YANG F. Inconformity of Li battery pack and remedial measures[J]. Auto Electric Parts, 2014(5): 37-40. | |
56 | KANG Y Z, DUAN B, ZHOU Z K, et al. A multi-fault diagnostic method based on an interleaved voltage measurement topology for series connected battery packs[J]. Journal of Power Sources, 2019, 417: 132-144. |
57 | GANESAN N, BASU S M, HARIHARAN K S, et al. Physics based modeling of a series parallel battery pack for asymmetry analysis, predictive control and life extension[J]. Journal of Power Sources, 2016, 322: 57-67. |
58 | HOFMANN M H, CZYRKA K, BRAND M J, et al. Dynamics of current distribution within battery cells connected in parallel[J]. Journal of Energy Storage, 2018, 20: 120-133. |
59 | BRAND M J, HOFMANN M H, STEINHARDT M, et al. Current distribution within parallel-connected battery cells[J]. Journal of Power Sources, 2016, 334: 202-212. |
60 | FLECKENSTEIN M, BOHLEN O, ROSCHER M A, et al. Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients[J]. Journal of Power Sources, 2011, 196(10): 4769-4778. |
61 | YANG N X, ZHANG X W, SHANG B B, et al. Unbalanced discharging and aging due to temperature differences among the cells in a lithium-ion battery pack with parallel combination[J]. Journal of Power Sources, 2016, 306: 733-741. |
62 | FILL A, KOCH S, POTT A, et al. Current distribution of parallel-connected cells in dependence of cell resistance, capacity and number of parallel cells[J]. Journal of Power Sources, 2018, 407: 147-152. |
63 | DARLING R, NEWMAN J. Modeling a porous intercalation electrode with two characteristic particle sizes[J]. Journal of the Electrochemical Society, 1997, 144(12): 4201-4208. |
64 | SHI W, HU X S, JIN C, et al. Effects of imbalanced currents on large-format LiFePO4/graphite batteries systems connected in parallel[J]. Journal of Power Sources, 2016, 313: 198-204. |
65 | 施宝昌, 沈爱弟. 并联锂离子电池组的模型化与电流分配[J]. 计算机测量与控制, 2017, 25(10): 189-193. |
SHI B C, SHEN A D. Modelling and current distribution of parallel-connected lithium cells[J]. Computer Measurement & Control, 2017, 25(10): 189-193. | |
66 | GOGOANA R, PINSON M B, BAZANT M Z, et al. Internal resistance matching for parallel-connected lithium-ion cells and impacts on battery pack cycle life[J]. Journal of Power Sources, 2014, 252: 8-13. |
67 | LI Y G, LAN B R, LUO J H. Modeling and simulation evaluation of current and temperature inconsistency in parallel connected lithium-ion batteries[C]//2018 International Conference on Information Systems and Computer Aided Education (ICISCAE). July 6-8, 2018, Changchun, China. IEEE, 2018: 12-18. |
68 | HARRIS S J, LU P. Effects of inhomogeneities—Nanoscale to mesoscale—On the durability of Li-ion batteries[J]. The Journal of Physical Chemistry C, 2013, 117(13): 6481-6492. |
69 | NAGARAJAN G S, VAN ZEE J W, SPOTNITZ R M. A mathematical model for intercalation electrode behavior: I. Effect of particle-size distribution on discharge capacity[J]. Journal of the Electrochemical Society, 1998, 145(3): 771-779. |
70 | DAVID L, MOHANTY D, GENG L X, et al. High-voltage performance of Ni-rich NCA cathodes: Linking operating voltage with cathode degradation[J]. ChemElectroChem, 2019, 6(22): 5571-5580. |
71 | CHENG X P, ZHENG J M, LU J X, et al. Realizing superior cycling stability of Ni-rich layered cathode by combination of grain boundary engineering and surface coating[J]. Nano Energy, 2019, 62: 30-37. |
72 | PARK J, ZHAO H B, KANG S D, et al. Fictitious phase separation in Li layered oxides driven by electro-autocatalysis[J]. Nature Materials, 2021, 20(7): 991-999. |
73 | LIU Z X, BATTAGLIA V, MUKHERJEE P P. Mesoscale elucidation of the influence of mixing sequence in electrode processing[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2014, 30(50): 15102-15113. |
74 | FONT F, PROTAS B, RICHARDSON G, et al. Binder migration during drying of lithium-ion battery electrodes: Modelling and comparison to experiment[J]. Journal of Power Sources, 2018, 393: 177-185. |
75 | BOCKHOLT H, INDRIKOVA M, NETZ A, et al. The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties[J]. Journal of Power Sources, 2016, 325: 140-151. |
76 | XIONG R Y, ZHANG Y, WANG Y M, et al. Scalable manufacture of high-performance battery electrodes enabled by a template-free method[J]. Small Methods, 2021, 5(6): doi: 10.1002/smtd.202100280. |
77 | 张双虎. 锂离子电池的电解液浸润的研究进展[J]. 化学世界, 2021, 62(3): 129-136. |
ZHANG S H. Progress in electrolyte wetting for lithium ion battery[J]. Chemical World, 2021, 62(3): 129-136. | |
78 | LI G X. Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(7): doi:10.1002/aenm.202002891. |
79 | HU Y S, LU Y X. The mystery of electrolyte concentration: From superhigh to ultralow[J]. ACS Energy Letters, 2020, 5(11): 3633-3636. |
80 | BAI X W, TAN J, WANG X L, et al. Study on distributed lithium-ion power battery grouping scheme for efficiency and consistency improvement[J]. Journal of Cleaner Production, 2019, 233: 429-445. |
81 | LIU C B, TAN J, SHI H Y, et al. Lithium-ion cell screening with convolutional neural networks based on two-step time-series clustering and hybrid resampling for imbalanced data[J]. IEEE Access, 2018, 6: 59001-59014. |
82 | 董缇, 彭鹏, 曹文炅, 等. 锂离子电池热管理和安全性研究[J]. 新能源进展, 2019, 7(1): 50-59. |
DONG T, PENG P, CAO W J, et al. Research on thermal management and safety of Li-ion batteries[J]. Advances in New and Renewable Energy, 2019, 7(1): 50-59. | |
83 | GÜMÜŞSU E, EKICI Ö, KÖKSAL M. 3-D CFD modeling and experimental testing of thermal behavior of a Li-Ion battery[J]. Applied Thermal Engineering, 2017, 120: 484-495. |
84 | SUN J L, LIU W, TANG C Y, et al. A novel active equalization method for series-connected battery packs based on clustering analysis with genetic algorithm[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7853-7865. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||