储能科学与技术 ›› 2022, Vol. 11 ›› Issue (2): 503-510.doi: 10.19799/j.cnki.2095-4239.2021.0383
贾林辉1,2(), 盖泽嘉3, 李沫汐3, 梁华根1,2()
收稿日期:
2021-08-02
修回日期:
2021-08-25
出版日期:
2022-02-05
发布日期:
2022-02-08
通讯作者:
梁华根
E-mail:1320817491@qq.com;lianghg@cumt.edu.cn
作者简介:
贾林辉(1995—),男,硕士研究生,研究方向为锂-空气电池正极材料,E-mail:基金资助:
Linhui JIA1,2(), Zejia GAI3, Moxi LI3, Huagen LIANG1,2()
Received:
2021-08-02
Revised:
2021-08-25
Online:
2022-02-05
Published:
2022-02-08
Contact:
Huagen LIANG
E-mail:1320817491@qq.com;lianghg@cumt.edu.cn
摘要:
金属有机骨架材料(MOFs)及其衍生物因其灵活多变的化学组成和多孔结构等独特优点而成为锂-氧气(Li-O2)电池正极的候选催化剂。本文通过对近期相关文献的分析,综述了MOFs基催化剂的设计和合成策略,重点介绍了MOFs热解衍生碳基材料、MOFs衍生单原子催化剂以及原始MOFs材料在Li-O2电池中的应用,分析了MOFs及其衍生物对ORR/OER的催化机理。综合分析表明,构建具有高密度催化活性位点、结构稳定、孔隙率高、导电性良好的MOFs材料及其衍生物是今后开发高效Li-O2电池正极催化剂的发展方向。
中图分类号:
贾林辉, 盖泽嘉, 李沫汐, 梁华根. MOFs及其衍生物在锂-氧气电池正极中的研究进展[J]. 储能科学与技术, 2022, 11(2): 503-510.
Linhui JIA, Zejia GAI, Moxi LI, Huagen LIANG. Research progress of MOFs and their derivatives as cathode catalysts for Li-O2 batteries[J]. Energy Storage Science and Technology, 2022, 11(2): 503-510.
1 | YU H H, LIU D P, FENG X L, et al. Mini review: Recent advances on flexible rechargeable Li-air batteries[J]. Energy & Fuels, 2021, 35(6): 4751-4761. |
2 | ZHANG P, DING M J, LI X X, et al. Challenges and strategy on parasitic reaction for high-performance nonaqueous lithium-oxygen batteries[J]. Advanced Energy Materials, 2020, 10(40): doi: 10. 1002/aenm.202001789. |
3 | WANG H F, WANG X X, LI M L, et al. Porous materials applied in nonaqueous Li-O2 batteries: Status and perspectives[J]. Advanced Materials, 2020, 32(44): doi: 10.1002/adma.202002559. |
4 | LIU T, VIVEK J P, ZHAO E W, et al. Current challenges and routes forward for nonaqueous lithium-air batteries[J]. Chemical Reviews, 2020, 120(14): 6558-6625. |
5 | KWAK W J, ROSY, SHARON D, et al. Lithium-oxygen batteries and related systems: Potential, status, and future[J]. Chemical Reviews, 2020, 120(14): 6626-6683. |
6 | KANG J H, LEE J, JUNG J W, et al. Lithium-air batteries: Air-breathing challenges and perspective[J]. ACS Nano, 2020, 14(11): 14549-14578. |
7 | 黄俊, 彭章泉. 锂-氧电池在几个关键科学问题上的最新进展[J]. 储能科学与技术, 2018, 7(2): 167-174. |
HUANG J, PENG Z Q. Progress in key scientific issues of Li-O2 batteries[J]. Energy Storage Science and Technology, 2018, 7(2): 167-174. | |
8 | BAE Y, PARK H, KO Y, et al. Bifunctional oxygen electrocatalysts for lithium-oxygen batteries[J]. Batteries & Supercaps, 2019, 2(4): doi: 10.1002/batt.201900039. |
9 | WANG Y J, FANG B Z, ZHANG D, et al. A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries[J]. Electrochemical Energy Reviews, 2018, 1(1): 1-34. |
10 | 朱子岳, 符冬菊, 陈建军, 等. 锌空气电池非贵金属双功能阴极催化剂研究进展[J]. 储能科学与技术, 2020, 9(5): 1489-1496. |
ZHU Z Y, FU D J, CHEN J J, et al. Research progress of non-precious metal bifunctional cathode electrocatalysts for zinc-air batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1489-1496. | |
11 | JUNG J W, CHO S H, NAM J S, et al. Current and future cathode materials for non-aqueous Li-air (O2) battery technology—A focused review[J]. Energy Storage Materials, 2020, 24: 512-528. |
12 | BALAISH M, JUNG J W, KIM I D, et al. A critical review on functionalization of air-cathodes for nonaqueous Li-O2 batteries[J]. Advanced Functional Materials, 2020, 30(18): doi: 10.1002/adfm. 201808303. |
13 | ZHOU Y, YAN D F, GU Q F, et al. Implanting cation vacancies in Ni-Fe LDHs for efficient oxygen evolution reactions of lithium-oxygen batteries[J]. Applied Catalysis B: Environmental, 2021, 285: doi: 10.1016/j.apcatb.2020.119792. |
14 | SONG K F, AI W, ZHANG Y, et al. Three-dimensional self-supported CuCo2O4 nanowires@NiO nanosheets core/shell arrays as an oxygen electrode catalyst for Li-O2 batteries[J]. Journal of Materials Chemistry A, 2021, 9(5): 3007-3017. |
15 | HE B, LI G Y, LI J J, et al. MoSe2@CNT core-shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium-oxygen batteries[J]. Advanced Energy Materials, 2021, 11(18): doi: 10.1002/aenm.202003263. |
16 | LIANG H G, JIA L H, CHEN F. Three-dimensional self-standing Co@NC octahedron/biochar cathode for non-aqueous Li-O2 batteries: Efficient catalysis for reversible formation and decomposition of LiOH[J]. Journal of Materials Science, 2020, 55(18): 7792-7804. |
17 | LIANG H G, GONG X, JIA L H, et al. Highly efficient Li-O2 batteries based on self-standing NiFeP@NC/BC cathode derived from biochar supported Prussian blue analogues[J]. Journal of Electroanalytical Chemistry, 2020, 867: doi: 10.1016/j.jelechem. 2020.114124. |
18 | LIANG H G, CHEN F, ZHANG M S, et al. Highly performing free standing cathodic electrocatalysts for Li-O2 batteries: CoNiO2 nanoneedle arrays supported on N-doped carbon nanonet[J]. Applied Catalysis A: General, 2019, 574: 114-121. |
19 | JING S Y, ZHANG Y L, CHEN F, et al. Novel and highly efficient cathodes for Li-O2 batteries: 3D self-standing NiFe@NC-functionalized N-doped carbon nanonet derived from Prussian blue analogues/biomass composites[J]. Applied Catalysis B: Environmental, 2019, 245: 721-732. |
20 | XIA H, XIE Q F, TIAN Y H, et al. High-efficient CoPt/activated functional carbon catalyst for Li-O2 batteries[J]. Nano Energy, 2021, 84: doi: 10.1016/j.nanoen.2021.105877. |
21 | DONG H Y, TANG P P, WANG X R, et al. Pt/NiO microsphere composite as efficient multifunctional catalysts for nonaqueous lithium-oxygen batteries and alkaline fuel cells: The synergistic effect of Pt and Ni[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 39789-39797. |
22 | ZHU X D, SHANG Y, LU Y C, et al. A free-standing biomass-derived RuO2/N-doped porous carbon cathode towards highly performance lithium-oxygen batteries[J]. Journal of Power Sources, 2020, 471: doi: 10.1016/j.jpowsour.2020.228444. |
23 | ZHAO L Y, XING Y, CHEN N, et al. A robust cathode of RuO2 nH2O clusters anchored on the carbon nanofibers for ultralong-life lithium-oxygen batteries[J]. Journal of Power Sources, 2020, 463: doi: 10.1016/j.jpowsour.2020.228161. |
24 | 黄澍, 王玮, 王康丽, 等. 石墨烯在化学储能中的研究进展[J]. 储能科学与技术, 2014, 3(2): 85-95. |
HUANG S, WANG W, WANG K L, et al. Recent progress about graphene for chemical energy storage applications[J]. Energy Storage Science and Technology, 2014, 3(2): 85-95. | |
25 | JING S Y, ZHANG M S, LIANG H G, et al. Facile synthesis of 3D binder-free N-doped carbon nanonet derived from silkworm cocoon for Li-O2 battery[J]. Journal of Materials Science, 2018, 53(6): 4395-4405. |
26 | NAM J S, JUNG J W, YOUN D Y, et al. Free-standing carbon nanofibers protected by a thin metallic iridium layer for extended life-cycle Li-oxygen batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 55756-55765. |
27 | WEI M H, LI B, JIN C, et al. A 3D free-standing thin film based on N, P-codoped hollow carbon fibers embedded with MoP quantum dots as high efficient oxygen electrode for Li-O2 batteries[J]. Energy Storage Materials, 2019, 17: 226-233. |
28 | LIU T, HUANG T, YU A S. Rational design of a hierarchical N-doped graphene-supported catalyst for highly energy-efficient lithium-oxygen batteries[J]. Journal of Materials Chemistry A, 2019, 7(34): 19745-19752. |
29 | LIU J, LI D, ZHANG S Q, et al. Hierarchical N-doped carbon nanocages/carbon textiles as a flexible O2 electrode for Li-O2 batteries[J]. Journal of Energy Chemistry, 2020, 46: 94-98. |
30 | LI S H, WANG M L, YAO Y, et al. Effect of the activation process on the microstructure and electrochemical properties of N-doped carbon cathodes in Li-O2 batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34997-35004. |
31 | BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939-943. |
32 | RODENAS T, LUZ I, PRIETO G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1): 48-55. |
33 | WANG C, XIE Z G, DEKRAFFT K E, et al. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis[J]. Journal of the American Chemical Society, 2011, 133(34): 13445-13454. |
34 | ZHAO S L, WANG Y, DONG J C, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.184. |
35 | KORNIENKO N, ZHAO Y B, KLEY C S, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide[J]. Journal of the American Chemical Society, 2015, 137(44): 14129-14135. |
36 | YUAN H Y, ALJNEIBI S A A A, YUAN J R, et al. ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing[J]. Advanced Materials, 2019, 31(11): doi: 10.1002/adma.201807161. |
37 | TAJIK S, BEITOLLAHI H, GARKANI NEJAD F, et al. Performance of metal-organic frameworks in the electrochemical sensing of environmental pollutants[J]. Journal of Materials Chemistry A, 2021, 9(13): 8195-8220. |
38 | MENDECKI L, MIRICA K A. Conductive metal-organic frameworks as ion-to-electron transducers in potentiometric sensors[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 19248-19257. |
39 | WANG T Z, CAO X J, JIAO L F. MOFs-derived carbon-based metal catalysts for energy-related electrocatalysis[J]. Small, 2021, 17(22): doi: 10.1002/smll.202004398. |
40 | WANG K X, HUI K N, HUI K S, et al. Recent progress in metal-organic framework/graphene-derived materials for energy storage and conversion: Design, preparation, and application[J]. Chemical Science, 2021, 12(16): 5737-5766. |
41 | LIANG Z B, QIU T J, GAO S, et al. Multi-scale design of metal-organic framework-derived materials for energy electrocatalysis[J]. Advanced Energy Materials, 2021: doi: 10.1002/aenm.202003410. |
42 | ZHONG M, KONG L J, ZHAO K, et al. Recent progress of nanoscale metal-organic frameworks in synthesis and battery applications[J]. Advanced Science, 2021, 8(4): doi: 10.1002/advs. 202001980. |
43 | WANG H F, CHEN L Y, PANG H, et al. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Chemical Society Reviews, 2020, 49(5): 1414-1448. |
44 | JIANG Z L, SUN H, SHI W K, et al. Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery[J]. Nano Research, 2019, 12(7): 1555-1562. |
45 | WANG Q, WANG X F, HE H R. Integrated 3D foam-like porous Ni3S2 as improved deposition support for high-performance Li-O2 battery[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2020.227397. |
46 | HE M L, JIA J, SUN Q, et al. Hollow N-doped carbon sphere synthesized by MOF as superior oxygen electrocatalyst for Li-O2 batteries[J]. International Journal of Energy Research, 2021, 45(5): 7120-7128. |
47 | LI J, DENG Y J, LENG L M, et al. MOF-Templated sword-like Co3O4@NiCo2O4 sheet arrays on carbon cloth as highly efficient Li-O2 battery cathode[J]. Journal of Power Sources, 2020, 450: doi: 10.1016/j.jpowsour.2020.227725. |
48 | MENG X K, LIAO K M, DAI J, et al. Ultralong cycle life Li-O2 battery enabled by a MOF-derived ruthenium-carbon composite catalyst with a durable regenerative surface[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20091-20097. |
49 | WANDT J, JAKES P, GRANWEHR J, et al. Singlet oxygen formation during the charging process of an aprotic lithium-oxygen battery[J]. Angewandte Chemie International Edition, 2016, 55(24): 6892-6895. |
50 | OTTAKAM THOTIYL M M, FREUNBERGER S A, PENG Z Q, et al. The carbon electrode in nonaqueous Li-O2 cells[J]. Journal of the American Chemical Society, 2013, 135(1): 494-500. |
51 | MCCLOSKEY B D, BETHUNE D S, SHELBY R M, et al. Limitations in rechargeability of Li-O2 batteries and possible origins[J]. The Journal of Physical Chemistry Letters, 2012, 3(20): 3043-3047. |
52 | MAHNE N, SCHAFZAHL B, LEYPOLD C, et al. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium-oxygen batteries[J]. Nature Energy, 2017, 2: doi: 10.1038/nenergy.2017.36. |
53 | YANG S X, HE P, ZHOU H S. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li-air/CO2 battery through tracing missing oxygen[J]. Energy & Environmental Science, 2016, 9(5): 1650-1654. |
54 | ZHAO Z W, HUANG J, PENG Z Q. Achilles' heel of lithium-air batteries: Lithium carbonate[J]. Angewandte Chemie International Edition, 2018, 57(15): 3874-3886. |
55 | XU S M, LAU S, ARCHER L A. CO2 and ambient air in metal-oxygen batteries: Steps towards reality[J]. Inorganic Chemistry Frontiers, 2015, 2(12): 1070-1079. |
56 | ZHANG H B, LIU G G, SHI L, et al. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis[J]. Advanced Energy Materials, 2018, 8(1): doi: 10.1002/aenm.201701343. |
57 | GAWANDE M B, ARIGA K, YAMAUCHI Y. Single-atom catalysts[J]. Small, 2021, 17(16): doi: 10.1002/smll.202101584. |
58 | ZHANG Q Q, GUAN J Q. Single-atom catalysts for electrocatalytic applications[J]. Advanced Functional Materials, 2020, 30(31): doi: 10.1002/j.adfm.202000768. |
59 | YE C L, ZHANG N Q, WANG D S, et al. Single atomic site catalysts: Synthesis, characterization, and applications[J]. Chemical Communications (Cambridge, England), 2020, 56(56): 7687-7697. |
60 | CHENG N C, STAMBULA S, DA WANG, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications, 2016, 7: doi: 10.1038/ncomms13638. |
61 | CHEN Y J, JI S F, CHEN C, et al. Single-atom catalysts: Synthetic strategies and electrochemical applications[J]. Joule, 2018, 2(7): 1242-1264. |
62 | HUANG H G, SHEN K, CHEN F F, et al. Metal-organic frameworks as a good platform for the fabrication of single-atom catalysts[J]. ACS Catalysis, 2020, 10(12): 6579-6586. |
63 | ZOU L L, WEI Y S, HOU C C, et al. Single-atom catalysts derived from metal-organic frameworks for electrochemical applications[J]. Small, 2021, 17(16): doi: 10.1002/smll.202004809. |
64 | XI J B, JUNG H S, XU Y, et al. Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts[J]. Advanced Functional Materials, 2021, 31(12): doi: 10.1002/j.adfm. 202008318. |
65 | YILMAZ G, PEH S B, ZHAO D, et al. Atomic- and molecular-level design of functional metal-organic frameworks (MOFs) and derivatives for energy and environmental applications[J]. Advanced Science, 2019, 6(21): doi: 10.1002/advs.201901129. |
66 | HU X L, LUO G, ZHAO Q N, et al. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries[J]. Journal of the American Chemical Society, 2020, 142(39): 16776-16786. |
67 | CHEN S R, CUI M, YIN Z H, et al. Single-atom and dual-atom electrocatalysts derived from metal organic frameworks: Current progress and perspectives[J]. ChemSusChem, 2021, 14(1): 73-93. |
68 | SUN T T, XU L B, WANG D S, et al. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion[J]. Nano Research, 2019, 12(9): 2067-2080. |
69 | WU D F, GUO Z Y, YIN X B, et al. Metal-organic frameworks as cathode materials for Li-O2 batteries[J]. Advanced Materials, 2014, 26(20): 3258-3262. |
70 | SATO T, HAMADA Y, SUMIKAWA M, et al. Solubility of oxygen in organic solvents and calculation of the Hansen solubility parameters of oxygen[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 19331-19337. |
71 | YAN W J, GUO Z Y, XU H S, et al. Downsizing metal-organic frameworks with distinct morphologies as cathode materials for high-capacity Li-O2 batteries[J]. Materials Chemistry Frontiers, 2017, 1(7): 1324-1330. |
72 | HU X F, ZHU Z Q, CHENG F Y, et al. Micro-nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li-O2 batteries[J]. Nanoscale, 2015, 7(28): 11833-11840. |
73 | YUAN M W, WANG R, FU W B, et al. Ultrathin two-dimensional metal-organic framework nanosheets with the inherent open active sites as electrocatalysts in aprotic Li-O2 batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11403-11413. |
74 | KIM S H, LEE Y J, KIM D H, et al. Bimetallic metal-organic frameworks as efficient cathode catalysts for Li-O2 batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 660-667. |
75 | XIE L S, SKORUPSKII G, DINCĂ M. Electrically conductive metal-organic frameworks[J]. Chemical Reviews, 2020, 120(16): 8536-8580. |
76 | ZHAO S H, WU H H, LI Y L, et al. Core-shell assembly of carbon nanofibers and a 2D conductive metal-organic framework as a flexible free-standing membrane for high-performance supercapacitors[J]. Inorganic Chemistry Frontiers, 2019, 6(7): 1824-1830. |
77 | WU H, ZHANG W L, KANDAMBETH S, et al. Conductive metal-organic frameworks selectively grown on laser-scribed graphene for electrochemical microsupercapacitors[J]. Advanced Energy Materials, 2019, 9(21): doi: 10.1002/j.aenm.201900482. |
78 | HUANG H, ZHAO Y, BAI Y M, et al. Conductive metal-organic frameworks with extra metallic sites as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Advanced Science, 2020, 7(9): 2000012. |
79 | XIONG W, CHENG X, WANG T, et al. Co3(hexahydroxytriphenylene)2: A conductive metal-organic framework for ambient electrocatalytic N2 reduction to NH3[J]. Nano Research, 2020, 13(4): 1008-1012. |
80 | SHI X F, HUA R, XU Y L, et al. Trimetallic conductive metal-organic frameworks as precatalysts for the oxygen evolution reaction with enhanced activity[J]. Sustainable Energy & Fuels, 2020, 4(9): 4589-4597. |
81 | WU F, FANG W, YANG X Y, et al. Two-dimensional π-conjugated metal-organic framework with high electrical conductivity for electrochemical sensing[J]. Journal of the Chinese Chemical Society, 2019, 66(5): 522-528. |
82 | SHINDE S S, LEE C H, JUNG J Y, et al. Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries[J]. Energy & Environmental Science, 2019, 12(2): 727-738. |
83 | SHINDE S S, LEE C H, YU J Y, et al. Hierarchically designed 3D holey C2 N aerogels as bifunctional oxygen electrodes for flexible and rechargeable Zn-air batteries[J]. ACS Nano, 2018, 12(1): 596-608. |
84 | PAN N, ZHANG H, YANG B, et al. Conductive MOFs as bifunctional oxygen electrocatalysts for all-solid-state Zn-air batteries[J]. Chemical Communications, 2020, 56(88): 13615-13618. |
85 | KO M, MENDECKI L, MIRICA K A. Conductive two-dimensional metal-organic frameworks as multifunctional materials[J]. Chemical Communications, 2018, 54(57): 7873-7891. |
86 | HMADEH M, LU Z, LIU Z, et al. New porous crystals of extended metal-catecholates[J]. Chemistry of Materials, 2012, 24(18): 3511-3513. |
[1] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[2] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[3] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[4] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[5] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[6] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[7] | 孙畅, 邓泽荣, 江宁波, 张露露, FANG Hui, 杨学林. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200. |
[8] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[9] | 余春林, 陈旭东, 宫川敏夫, 孙辉, 张兴旺, 童莉葛. 特殊结构前驱体对锂电池三元正极材料性能的提升[J]. 储能科学与技术, 2022, 11(3): 1000-1007. |
[10] | 吴渺, 赵贵青, 仇中柱, 王保峰. 一种新型水系锌离子电池正极材料NiCo2O4 的制备和电化学性能[J]. 储能科学与技术, 2022, 11(3): 1019-1025. |
[11] | 翁素婷, 刘泽鹏, 杨高靖, 张思蒙, 张啸, 方遒, 李叶晶, 王兆翔, 王雪锋, 陈立泉. 冷冻电镜表征锂电池中的辐照敏感材料[J]. 储能科学与技术, 2022, 11(3): 760-780. |
[12] | 任重民, 王斌, 陈帅帅, 李华, 陈珍莲, 王德宇. 层状正极材料力学劣化及改善措施[J]. 储能科学与技术, 2022, 11(3): 948-956. |
[13] | 岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092. |
[14] | 田孟羽, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.10.1—2021.11.30)[J]. 储能科学与技术, 2022, 11(1): 297-312. |
[15] | 季洪祥, 金周, 田孟羽, 武怿达, 詹元杰, 田丰, 闫勇, 岑官骏, 乔荣涵, 申晓宇, 朱璟, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.8.1—2021.9.30)[J]. 储能科学与技术, 2021, 10(6): 2411-2427. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||