储能科学与技术 ›› 2022, Vol. 11 ›› Issue (2): 511-520.doi: 10.19799/j.cnki.2095-4239.2021.0375
收稿日期:
2021-07-26
修回日期:
2021-09-02
出版日期:
2022-02-05
发布日期:
2022-02-08
通讯作者:
郭云琪,朱春宇
E-mail:guoyunqi@cumt.edu.cn;zcyls@cumt.edu.cn
作者简介:
郭云琪(1995—),男,博士研究生,研究方向为相变储热,E-mail:基金资助:
Yunqi GUO(), Nan SHENG, Chunyu ZHU(), Zhonghao RAO
Received:
2021-07-26
Revised:
2021-09-02
Online:
2022-02-05
Published:
2022-02-08
Contact:
Yunqi GUO,Chunyu ZHU
E-mail:guoyunqi@cumt.edu.cn;zcyls@cumt.edu.cn
摘要:
石蜡是一种高储热密度的有机相变材料,但是热导率低和易泄漏的缺点限制其进一步发展。为提高石蜡的导热和防泄漏性能,本研究以天然纤维为模板制备了具有高导热性的纤维状氧化铝导热填料,通过真空浸渍混合法制备了氧化铝纤维/石蜡复合相变材料,并对其形貌、热导率、相变循环稳定性、防泄漏性能以及热响应性能进行测试。结果表明,随着填料含量的增加,复合相变材料的导热系数近似线性增加。1200 ℃高温烧结形成的α型Al2O3比1000 ℃低温烧结γ型Al2O3具有更高的导热性能,且α型氧化铝纤维填充量达到45%(质量分数,余同)时,导热系数达到最高值为0.69 W/(m·K),是纯石蜡的2.9倍。通过对3种不同填充量Al2O3纤维进行100次的热循环测试,复合相变材料的相变焓值基本不变,说明了其具有良好的热循环稳定性。同时对复合相变材料的防泄漏性能以及热响应性能进行测试,结果显示30%和45%填料的α型Al2O3纤维均具有较好的防泄漏以及快速热响应能力。
中图分类号:
郭云琪, 盛楠, 朱春宇, 饶中浩. 基于模板法制备氧化铝纤维及其石蜡复合相变材料热性能[J]. 储能科学与技术, 2022, 11(2): 511-520.
Yunqi GUO, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of Al2O3 fibers using a template method, and the investigation of the thermal properties of paraffin phase-change composite[J]. Energy Storage Science and Technology, 2022, 11(2): 511-520.
表3
复合相变材料融化和凝固的相变温度及焓值"
样品 | 循环 次数 | 融化过程 | 凝固过程 | ||
---|---|---|---|---|---|
Tmp/℃ | ΔHm/(J/g) | Tsp/℃ | ΔHs/(J/g) | ||
S20-1200-PW15 | 10 | 55.3 | 179.7 | 50.7 | 175.3 |
30 | 55.3 | 182.1 | 50.6 | 176.9 | |
50 | 55.3 | 180.0 | 50.7 | 177.0 | |
100 | 55.3 | 180. 5 | 50.7 | 177.6 | |
S20-1200-PW30 | 10 | 54.5 | 112.1 | 49.8 | 110.1 |
30 | 54.5 | 112.4 | 49.8 | 110.2 | |
50 | 54.5 | 112.0 | 49.8 | 110.0 | |
100 | 54.5 | 112.0 | 50.9 | 109.6 | |
S20-1200-PW45 | 10 | 53.8 | 95.0 | 49.8 | 94.5 |
30 | 54.1 | 95.9 | 49.7 | 95.1 | |
50 | 54.1 | 96.3 | 49.8 | 95.1 | |
100 | 53.7 | 95.8 | 49.7 | 95.1 | |
纯石蜡 | 1 | 56.1 | 192.0 | 50.7 | 191.4 |
1 | TAHAN LATIBARI S, SADRAMELI S M. Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: An extensive review[J]. Solar Energy, 2018, 170: 1130-1161. |
2 | MOHAMED S A, AL-SULAIMAN F A, IBRAHIM N I, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1072-1089. |
3 | KENISARIN M, MAHKAMOV K. Passive thermal control in residential buildings using phase change materials[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 371-398. |
4 | 凌子夜, 张正国, 方晓明, 等. 不同复合相变材料用于电子器件控温性能的研究[J]. 工程热物理学报, 2015, 36(1): 147-150. |
LING Z Y, ZHANG Z G, FANG X M, et al. Performances of a thermal management system using different phase change materials on a simulative electronic chip[J]. Journal of Engineering Thermophysics, 2015, 36(1): 147-150. | |
5 | 崔艳琦. 相变材料热性能及其在室内被动式储能系统的简易计算[J]. 储能科学与技术, 2017, 6(2): 302-306. |
CUI Y Q. Thermal properties of phase change materials(PCM) and their concise calculations for passive storage applications in buildings[J]. Energy Storage Science and Technology, 2017, 6(2): 302-306. | |
6 | 张佳利, 丁宇, 曲丽洁, 等. 石蜡/膨胀石墨复合相变储热单元的放热性能[J]. 储能科学与技术, 2019, 8(1): 108-115. |
ZHANG J L, DING Y, QU L J, et al. Discharge performance of a thermal energy storage unit with paraffin-expanded graphite composite phase change materials[J]. Energy Storage Science and Technology, 2019, 8(1): 108-115. | |
7 | 吴熠, 张超, 凌子夜, 等. 石蜡/SEBS复合相变材料热疗鼻贴的研究[J]. 储能科学与技术, 2021, 10(4): 1285-1291. |
WU Y, ZHANG C, LING Z Y, et al. Developing thermal therapy nasal strip based on paraffin/SEBS composite phase change material[J]. Energy Storage Science and Technology, 2021, 10(4): 1285-1291. | |
8 | 曹建军, 王俊, 张利勇, 等. 蓄热技术对可再生能源分布式能源系统的效益分析[J]. 储能科学与技术, 2021, 10(1): 385-392. |
CAO J J, WANG J, ZHANG L Y, et al. Benefit analysis of heat storage technology applied to distributed energy system with renewable energy[J]. Energy Storage Science and Technology, 2021, 10(1): 385-392. | |
9 | 刘丽辉, 莫雅菁, 孙小琴, 等. 纳米增强型复合相变材料的传热特性[J]. 储能科学与技术, 2020, 9(4): 1105-1112. |
LIU L H, MO Y J, SUN X Q, et al. Thermal behavior of the nanoenhanced phase change materials[J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112. | |
10 | 尤若波. 相变材料在动力电池热管理中的应用研究[J]. 储能科学与技术, 2017, 6(5): 1148-1157. |
YOU R B. A study of phase-change material application in lithium-ion power battery thermal management[J]. Energy Storage Science and Technology, 2017, 6(5): 1148-1157. | |
11 | 向欢欢, 陈观生, 张仁元, 等. 金属/相变储热材料的导热性研究进展[J]. 储能科学与技术, 2014, 3(5): 520-525. |
XIANG H H, CHEN G S, ZHANG R Y, et al. Thermal conductivity of metal-phase change materials—A review[J]. Energy Storage Science and Technology, 2014, 3(5): 520-525. | |
12 | 张怡秋, 程傲, 李小波. 基于Na2HPO4·12H2O相变储能热管理的储热过程研究[J]. 储能科学与技术, 2018, 7(2): 282-287. |
ZHANG Y Q, CHENG A, LI X B. Thermal management based on Na2HPO4·12H2O phase change heat storage[J]. Energy Storage Science and Technology, 2018, 7(2): 282-287. | |
13 | 马预谱, 胡锦炎, 陈奇, 等. 金属材料增强的石蜡储热性能研究[J]. 工程热物理学报, 2016, 37(10): 2196-2201. |
MA Y P, HU J Y, CHEN Q, et al. Study on heat storage performance enhancement of paraffin by metallic material[J]. Journal of Engineering Thermophysics, 2016, 37(10): 2196-2201. | |
14 | 马炳倩, 李建强, 彭志坚, 等. 石蜡基复合相变储热材料的导热性能[J]. 储能科学与技术, 2012, 1(2): 131-138. |
MA B Q, LI J Q, PENG Z J, et al. Paraffin based composite phase change materials for thermal energy storage: Thermal conductivity enhancement[J]. Energy Storage Science and Technology, 2012, 1(2): 131-138. | |
15 | ZHANG S, FENG D L, SHI L, et al. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: doi: 10.1016/j.rser.2020.110127. |
16 | 徐众, 侯静, 万书权, 等. 金属泡沫/石蜡复合相变材料的制备及热性能研究[J]. 储能科学与技术, 2020, 9(1): 109-116. |
XU Z, HOU J, WAN S Q, et al. Preparation and thermal properties of metal foam/paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2020, 9(1): 109-116. | |
17 | 万倩, 何露茜, 何正斌, 等. 泡沫铁/石蜡复合相变储能材料放热过程及其热量传递规律[J]. 储能科学与技术, 2020, 9(4): 1098-1104. |
WAN Q, HE L X, HE Z B, et al. Exothermic process and heat transfer of iron foam/paraffin composite phase change energy storage materials[J]. Energy Storage Science and Technology, 2020, 9(4): 1098-1104. | |
18 | 万倩, 肖浩南, 钱京, 等. 泡沫铁对石蜡相变储热过程的影响[J]. 储能科学与技术, 2020, 9(1): 94-100. |
WAN Q, XIAO H N, QIAN J, et al. Influence of iron foam on paraffin phase change heat storage process[J]. Energy Storage Science and Technology, 2020, 9(1): 94-100. | |
19 | LIU Z Y, ZANG C Y, JU Z C, et al. Consistent preparation, chemical stability and thermal properties of a shape-stabilized porous carbon/paraffin phase change materials[J]. Journal of Cleaner Production, 2020, 247: doi: 10.1016/j.jclepro.2019.1195655. |
20 | 王静静, 徐小亮, 梁凯彦, 等. 多孔基定形复合相变材料传热性能提升研究进展[J]. 工程科学学报, 2020, 42(1): 26-38. |
WANG J J, XU X L, LIANG K Y, et al. Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: A review[J]. Chinese Journal of Engineering, 2020, 42(1): 26-38. | |
21 | 陶璋, 伍玲梅, 张亚飞, 等. 生物质多孔碳基复合相变材料制备及性能[J]. 工程科学学报, 2020, 42(1): 113-119. |
TAO Z, WU L M, ZHANG Y F, et al. Preparation and properties of biomass porous carbon composite phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 113-119. | |
22 | ZHU X, WANG Q, KANG S G, et al. Coal-based ultrathin-wall graphitic porous carbon for high-performance form-stable phase change materials with enhanced thermal conductivity[J]. Chemical Engineering Journal, 2020, 395: 125112. |
23 | 王海民, 王寓非, 胡峰. 石墨-石蜡复合相变材料的圆柱型动力电池组热管理性能[J]. 储能科学与技术, 2021, 10(1): 210-217. |
WANG H M, WANG Y F, HU F. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2021, 10(1): 210-217. | |
24 | 张佳利, 丁宇, 曲丽洁, 等. 石蜡/膨胀石墨复合相变储热单元的放热性能[J]. 储能科学与技术, 2019, 8(1): 108-115. |
ZHANG J L, DING Y, QU L J, et al. Discharge performance of a thermal energy storage unit with paraffin-expanded graphite composite phase change materials[J]. Energy Storage Science and Technology, 2019, 8(1): 108-115. | |
25 | 林肯, 许肖永, 李强, 等. 石蜡-膨胀石墨复合相变材料热导率研究[J]. 化工学报, 2021, 72(8): 4425-4432. |
LIN K, XU X Y, LI Q, et al. Study on thermal conductivity of paraffin-expanded graphite composite phase change materials[J]. CIESC Journal, 2021, 72(8): 4425-4432. | |
26 | SUN K Y, KOU Y, ZHANG Y W, et al. Photo-triggered hierarchical porous carbon-based composite phase-change materials with superior thermal energy conversion capacity[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3445-3453. |
27 | ATINAFU D G, DONG W J, WANG C, et al. Synthesis of porous carbon from cotton using an Mg(OH)2 template for form-stabilized phase change materials with high encapsulation capacity, transition enthalpy and reliability[J]. Journal of Materials Chemistry A, 2018, 6(19): 8969-8977. |
28 | WANG C J, LIANG W D, YANG Y Y, et al. Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage[J]. Renewable Energy, 2020, 153: 182-192. |
29 | WANG C J, LIANG W D, TANG Z Q, et al. Enhanced light-thermal conversion efficiency of mixed clay base phase change composites for thermal energy storage[J]. Applied Clay Science, 2020, 189: doi: 10.1016/j.clay.2020.105535. |
30 | CHENG L, FENG J C. Form-stable phase change materials based on delignified wood flour for thermal management of buildings[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: doi: 10.1016/j.compositesa.2019.105690. |
31 | LI S M, WANG Y L, MA M G, et al. Microwave-assisted method for the synthesis of cellulose-based composites and their thermal transformation to Mn2O3[J]. Industrial Crops and Products, 2013, 43: 751-756. |
32 | CHEN H Y, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science, 2016, 59: 41-85. |
[1] | 李仲博, 汉京晓, 王成成, 杨慧, 杨娜, 尹少武, 王立, 童莉葛, 唐志伟, 丁玉龙. 热化学反应器放热过程模拟及参数影响规律[J]. 储能科学与技术, 2022, 11(7): 2133-2140. |
[2] | 蒋铖一, 钟尊睿, 吴自德, 彭浩. C8H18~C11H24 混合烷烃体系相变材料的热力学性能[J]. 储能科学与技术, 2022, 11(6): 1957-1967. |
[3] | 杨娜, 王成成, 杨慧, 胡志昊, 童莉葛, 李仲博, 王立, 丁玉龙, 李娜. 基于热化学反应的硅胶非等温动力学计算及储热性能分析[J]. 储能科学与技术, 2022, 11(5): 1331-1338. |
[4] | 郝金鹏, 杜迎春, 伍弘, 和琨, 汪垒. 侧壁面正弦加热条件下电场强化固液相变研究[J]. 储能科学与技术, 2022, 11(5): 1446-1454. |
[5] | 周新宇, 栾道成, 胡志华, 凌俊华, 文科林, 刘浪, 阴志铭, 米书恒, 王正云. 含碳二元系相变储热材料储热性能分析选择[J]. 储能科学与技术, 2022, 11(4): 1175-1183. |
[6] | 李钰颖, 魏雯珍, 李琦, 吴玉庭. 可用于低中温热能储存的四元硝酸盐/埃洛石/石墨定型复合材料的制备与研究[J]. 储能科学与技术, 2022, 11(3): 1044-1051. |
[7] | 张永学, 王梓熙, 鲁博辉, 杨胜旗, 赵泓宇. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530. |
[8] | 朱鸿章, 吴传平, 周天念, 邓捷. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(1): 201-210. |
[9] | 安治国, 张显, 祝惠, 张春杰. 蜂窝状CPCM/水冷复合式圆柱型锂电池散热性能[J]. 储能科学与技术, 2022, 11(1): 211-220. |
[10] | 王青萌, 刘志, 程晓敏, 程千驹, 吕泽安. In元素对Sn-Bi-Zn传热储热合金高温容器相容性的影响[J]. 储能科学与技术, 2022, 11(1): 9-18. |
[11] | 次恩达, 王会, 李晓卿, 张英, 张振迎, 李建强. 六水硝酸镁-硝酸锂共晶盐/膨胀石墨复合相变材料的制备及性能强化[J]. 储能科学与技术, 2022, 11(1): 30-37. |
[12] | 张诗钽, 楚帅, 葛维春, 李音璇, 刘闯. 大规模弃风与储热协调调控评估方法[J]. 储能科学与技术, 2022, 11(1): 283-290. |
[13] | 徐钿昕, 田希坤, 闫君, 叶强, 赵长颖. TiO2改性的CaCO3热化学储热的反应性能[J]. 储能科学与技术, 2022, 11(1): 1-8. |
[14] | 张晓光, 潘晓楠, 李金铭, 刘丽, 何燕. 电池排布对锂电池组相变热管理性能的影响[J]. 储能科学与技术, 2022, 11(1): 127-135. |
[15] | 张博雅, 刘柏鸿, 黎远航, 刘欣, 陈乾风, 侯三英. 二元氧化物修饰催化剂的制备及其自增湿性能[J]. 储能科学与技术, 2021, 10(6): 2013-2019. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||