1 |
HU H, WU M B. Heavy oil-derived carbon for energy storage applications[J]. Journal of Materials Chemistry A, 2020, 8(15): 7066-7082.
|
2 |
WANG S C, LIU G, WANG L Z. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting[J]. Chemical Reviews, 2019, 119(8): 5192-5247.
|
3 |
WANG H, ZHU C, CHAO D, et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J]. Advanced Materials, 2017, 29(46): doi: 10.1002/adma.201702093.
|
4 |
ZHOU X L, LIU Q R, JIANG C L, et al. Strategies towards low-cost dual-ion batteries with high performance[J]. Angewandte Chemie, 2020, 59(10): 3802-3832.
|
5 |
SAUREL D, ORAYECH B, XIAO B W, et al. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201703268.
|
6 |
CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
|
7 |
ZHU Y L, WANG Y X, GAO C, et al. CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage[J]. New Carbon Materials, 2020, 35(4): 358-370.
|
8 |
HE L, SUN Y R, WANG C L, et al. High performance sulphur-doped pitch-based carbon materials as anode materials for sodium-ion batteries[J]. New Carbon Materials, 2020, 35(4): 420-427.
|
9 |
陆浩, 刘柏男, 禇赓, 等. 锂离子电池负极材料产业化技术进展[J]. 储能科学与技术, 2016, 5(2): 109-119.
|
|
LU H, LIU B N, CHU G, et al. Technology review of anode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(2): 109-119.
|
10 |
QIAN T, HUANG Y C, ZHANG M D, et al. Non-corrosive and low-cost synthesis of hierarchically porous carbon frameworks for high-performance lithium-ion capacitors[J]. Carbon, 2021, 173: 646-654.
|
11 |
PENG T Y, TAN Z H, ZHANG M D, et al. Facile and cost-effective manipulation of hierarchical carbon nanosheets for pseudocapacitive lithium/potassium storage[J]. Carbon, 2020, 165: 296-305.
|
12 |
WU J X, CAO Y L, ZHAO H M, et al. The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries[J]. Carbon Energy, 2019, 1(1): 57-76.
|
13 |
杨旺, 李瑞, 候利强, 等. 石油沥青基富氮/硫掺杂多孔炭材料的制备及其对电极性能[J]. 新型炭材料, 2020, 35(3): 253-261.
|
|
YANG W, LI R, HOU L Q, et al. Synthesis of a petroleum asphalt-based nitrogen/sulfur doped porous carbon material and its use as the counter electrode of dye-sensitized solar cells[J]. New Carbon Materials, 2020, 35(3): 253-261.
|
14 |
GAO C, FENG J Z, DAI J R, et al. Manipulation of interlayer spacing and surface charge of carbon nanosheets for robust lithium/sodium storage[J]. Carbon, 2019, 153: 372-380.
|
15 |
LI Y, YANG W, TU Z Q, et al. Water-soluble salt-templated strategy to regulate mesoporous nanosheets-on-network structure with active mixed-phase CoO/Co3O4 nanosheets on graphene for superior lithium storage[J]. Journal of Alloys and Compounds, 2021, 857: doi: 10.1016/j.jallcom.2020.157626.
|
16 |
XIE D, XIA X H, WANG Y D, et al. Nitrogen-doped carbon embedded MoS2 microspheres as advanced anodes for lithium- and sodium-ion batteries[J]. Chemistry—A European Journal, 2016, 22(33): 11617-11623.
|
17 |
SAITO R, HOFMANN M, DRESSELHAUS G, et al. Raman spectroscopy of graphene and carbon nanotubes[J]. Advances in Physics, 2011, 60(3): 413-550.
|
18 |
LIU J, CHEN Z Q. Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model[J]. IEEE Access, 2019, 7: 39474-39484.
|
19 |
LI X Y, YUAN C G, WANG Z P. Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J]. Journal of Power Sources, 2020, 467: doi: 10.1016/j.jpowsour.2020.228358.
|
20 |
XIONG T, SU H, YANG F, et al. Harmonizing self-supportive VN/MoS2 pseudocapacitance core-shell electrodes for boosting the areal capacity of lithium storage[J]. Materials Today Energy, 2020, 17: doi: 10.1016/j.mtener.2020.100461.
|
21 |
ZHAO X W, LIU Z C, XIAO W Y, et al. Low crystalline MoS2 nanotubes from MoS2 nanomasks for lithium ion battery applications[J]. ACS Applied Nano Materials, 2020, 3(8): 7580-7586.
|
22 |
DONG C F, GUO L J, LI H B, et al. Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries[J]. Energy Storage Materials, 2020, 25: 679-686.
|
23 |
HUANG Z Y, HAN X Y, CUI X, et al. Vertically aligned VS2 on graphene as a 3D heteroarchitectured anode material with capacitance-dominated lithium storage[J]. Journal of Materials Chemistry A, 2020, 8(12): 5882-5889.
|
24 |
张香华, 骆微, 芮先宏, 等. 钠离子电池正极材料VOPO4 ·2H2O纳米片的合成与电化学性能[J]. 储能科学与技术, 2020, 9(5): 1410-1415.
|
|
ZHANG X H, LUO W, RUI X H, et al. Preparation and electrochemical performance of VOPO4 ·2H2O nanosheet cathode for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1410-1415.
|
25 |
ZHU X Y, ZHAO W, SONG Y Z, et al. In situ assembly of 2D conductive vanadium disulfide with graphene as a high-sulfur-loading host for lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(20): 1800201.
|
26 |
周思宇, 唐正, 范景瑞, 等. 过渡金属氧化物微纳阵列在钠离子电池中的研究进展[J]. 储能科学与技术, 2020, 9(5): 1383-1395.
|
|
ZHOU S Y, TANG Z, FAN J R, et al. Research progress of transition metal oxide micro-nano structured arrays for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1383-1395.
|
27 |
REN J, REN R P, LV Y K. A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery[J]. Chemical Engineering Journal, 2018, 353: 419-424.
|
28 |
MA L X, ZHAO B L, WANG X S, et al. MoS2 nanosheets vertically grown on carbonized corn stalks as lithium-ion battery anode[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22067-22073.
|
29 |
ZHAO G, CHENG Y L, SUN P X, et al. Biocarbon based template synthesis of uniform lamellar MoS2 nanoflowers with excellent energy storage performance in lithium-ion battery and supercapacitors[J]. Electrochimica Acta, 2020, 331: doi: 10.1016/j.electacta.2019.135262.
|
30 |
ZHOU Z P, CHEN F, WU L, et al. Heteroatoms-doped 3D carbon nanosphere cages embedded with MoS2 for lithium-ion battery[J]. Electrochimica Acta, 2020, 332: doi: 10.1016/j.electacta.2019.135490.
|
31 |
CHEN B, MENG Y H, HE F, et al. Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped graphene heterostructure for promising lithium-ion batteries[J]. Nano Energy, 2017, 41: 154-163.
|