1 |
ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
|
2 |
LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, doi: 10.1002/adma.201800561.
|
3 |
LU J, WU T, AMINE K. State-of-the-art characterization techniques for advanced lithium-ion batteries[J]. Nature Energy, 2017, 2: doi: 10.1038/nenergy.2017.11.
|
4 |
BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29.
|
5 |
PENG Z Q, FREUNBERGER S A, CHEN Y H, et al. A reversible and higher-rate Li-O2 battery[J]. Science, 2012, 337(6094): 563-566.
|
6 |
ASADI M, SAYAHPOUR B, ABBASI P, et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere[J]. Nature, 2018, 555(7697): 502-506.
|
7 |
LUNTZ A C, MCCLOSKEY B D. Nonaqueous Li-air batteries: A status report[J]. Chemical Reviews, 2014, 114(23): 11721-11750.
|
8 |
KWAK W J, ROSY, SHARON D, et al. Lithium-oxygen batteries and related systems: Potential, status, and future[J]. Chemical Reviews, 2020, 120(14): 6626-6683.
|
9 |
GAO H, GALLANT B M. Advances in the chemistry and applications of alkali-metal-gas batteries[J]. Nature Reviews Chemistry, 2020, 4(11): 566-583.
|
10 |
XU R, LU J, AMINE K. Progress in mechanistic understanding and characterization techniques of Li-S batteries[J]. Advanced Energy Materials, 2015, 5(16): doi: 10.1002/aenm.201500408.
|
11 |
ZAERA F. Probing liquid/solid interfaces at the molecular level[J]. Chemical Reviews, 2012, 112(5): 2920-2986.
|
12 |
LI X N, WANG H Y, YANG H B, et al. In situ/operando characterization techniques to probe the electrochemical reactions for energy conversion[J]. Small Methods, 2018, 2(6): doi: 10.1002/smtd.201700395.
|
13 |
LI H Y, GUO S H, ZHOU H S. In-situ/operando characterization techniques in lithium-ion batteries and beyond[J]. Journal of Energy Chemistry, 2021, 59: 191-211.
|
14 |
CHENG X B, ZHANG R, ZHAO C Z, et al. A review of solid electrolyte interphases on lithium metal anode[J]. Advanced Science, 2015, 3(3): doi: 10.1002/advs.201500213.
|
15 |
BHATTACHARYYA R, KEY B, CHEN H, et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries[J]. Nature Materials, 2010, 9(6): 504-510.
|
16 |
HUANG J Y, ZHONG L, WANG C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode[J]. Science, 2010, 330(6010): 1515-1520.
|
17 |
LIU X, WANG D, LIU G, et al. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy[J]. Nature Communications, 2013, 4: doi: 10.1038/ncomms3568.
|
18 |
EBNER M, MARONE F, STAMPANONI M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries[J]. Science, 2013, 342(6159): 716-720.
|
19 |
LIU H, STROBRIDGE F C, BORKIEWICZ O J, et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes[J]. Science, 2014, 344(6191): doi: 10.1126/science.1252817.
|
20 |
ZHU Z H, ZHOU Y F, YAN P F, et al. In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries[J]. Nano Letters, 2015, 15(9): 6170-6176.
|
21 |
LIU P Y, LU M, ZHENG Q L, et al. Recent advances of electrochemical mass spectrometry[J]. The Analyst, 2013, 138(19): 5519-5539.
|
22 |
LU J S, HUA X, LONG Y T. Recent advances in real-time and in situ analysis of an electrode-electrolyte interface by mass spectrometry[J]. The Analyst, 2017, 142(5): 691-699.
|
23 |
BONNIN E A, RIZZOLI S O. Novel secondary ion mass spectrometry methods for the examination of metabolic effects at the cellular and subcellular levels[J]. Frontiers in Behavioral Neuroscience, 2020, 14: doi: 10.3389/fnbeh.2020.00124.
|
24 |
FLETCHER J S. Latest applications of 3D ToF-SIMS bio-imaging[J]. Biointerphases, 2015, 10(1): doi: 10.1116/1.4907727.
|
25 |
NUÑEZ J, RENSLOW R, CLIFF J B 3rd, et al. NanoSIMS for biological applications: Current practices and analyses[J]. Biointerphases, 2017, 13(3): doi: 10.1116/1.4993628.
|
26 |
LIU B W, YU X Y, ZHU Z H, et al. In situ chemical probing of the electrode-electrolyte interface by ToF-SIMS[J]. Lab on a Chip, 2014, 14(5): 855-859.
|
27 |
XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.
|
28 |
NIE M Y, ABRAHAM D P, SEO D M, et al. Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate[J]. The Journal of Physical Chemistry C, 2013, 117(48): 25381-25389.
|
29 |
HE Y T, ZHANG Y H, YU P, et al. Ion association tailoring SEI composition for Li metal anode protection[J]. Journal of Energy Chemistry, 2020, 45: 1-6.
|
30 |
ZHOU L, CAO Z, WAHYUDI W, et al. Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries[J]. ACS Energy Letters, 2020, 5(3): 766-776.
|
31 |
BORODIN O, REN X M, VATAMANU J, et al. Modeling insight into battery electrolyte electrochemical stability and interfacial structure[J]. Accounts of Chemical Research, 2017, 50(12): 2886-2894.
|
32 |
CRESCE A, BORODIN O, XU K. Correlating Li+ solvation sheath structure with interphasial chemistry on graphite[J]. The Journal of Physical Chemistry C, 2012, 116(50): 26111-26117.
|
33 |
ZHANG Y Y, SU M, YU X F, et al. Investigation of ion-solvent interactions in nonaqueous electrolytes using in situ liquid SIMS[J]. Analytical Chemistry, 2018, 90(5): 3341-3348.
|
34 |
ZHOU Y, SU M, YU X, et al. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery[J]. Nature Nanotechnology, 2020, 15(3): 224-230.
|
35 |
USHIROGATA K, SODEYAMA K, FUTERA Z, et al. Near-shore aggregation mechanism of electrolyte decomposition products to explain solid electrolyte interphase formation[J]. Journal of the Electrochemical Society, 2015, 162(14): A2670-A2678.
|
36 |
TAKENAKA N, SUZUKI Y, SAKAI H, et al. On electrolyte-dependent formation of solid electrolyte interphase film in lithium-ion batteries: Strong sensitivity to small structural difference of electrolyte molecules[J]. The Journal of Physical Chemistry C, 2014, 118(20): 10874-10882.
|
37 |
LIU Z, LU P, ZHANG Q L, et al. A bottom-up formation mechanism of solid electrolyte interphase revealed by isotope-assisted time-of-flight secondary ion mass spectrometry[J]. The Journal of Physical Chemistry Letters, 2018, 9(18): 5508-5514.
|
38 |
LU P, HARRIS S J. Lithium transport within the solid electrolyte interphase[J]. Electrochemistry Communications, 2011, 13(10): 1035-1037.
|
39 |
RANDAU S, WEBER D A, KÖTZ O, et al. Benchmarking the performance of all-solid-state lithium batteries[J]. Nature Energy, 2020, 5(3): 259-270.
|
40 |
BIELEFELD A, WEBER D A, JANEK J. Microstructural modeling of composite cathodes for all-solid-state batteries[J]. The Journal of Physical Chemistry C, 2019, 123(3): 1626-1634.
|
41 |
SAKUDA A, TAKEUCHI T, KOBAYASHI H. Electrode morphology in all-solid-state lithium secondary batteries consisting of LiNi1/3Co1/3Mn1/3O2 and Li2S-P2S5 solid electrolytes[J]. Solid State Ionics, 2016, 285: 112-117.
|
42 |
YAMAGISHI Y, MORITA H, NOMURA Y, et al. Visualizing lithium distribution and degradation of composite electrodes in sulfide-based all-solid-state batteries using operando time-of-flight secondary ion mass spectrometry[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 580-586.
|
43 |
LIU J, BAO Z, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186.
|
44 |
CHEN S R, NIU C J, LEE H, et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries[J]. Joule, 2019, 3(4): 1094-1105.
|
45 |
NANDA S, MANTHIRAM A. Lithium degradation in lithium-sulfur batteries: Insights into inventory depletion and interphasial evolution with cycling[J]. Energy & Environmental Science, 2020, 13(8): 2501-2514.
|
46 |
ZHAO Z W, HUANG J, PENG Z Q. Achilles' heel of lithium-air batteries: Lithium carbonate[J]. Angewandte Chemie, 2018, 57(15): 3874-3886.
|
47 |
WANG J W, ZHANG Y L, GUO L M, et al. Identifying reactive sites and transport limitations of oxygen reactions in aprotic lithium-O2 batteries at the stage of sudden death[J]. Angewandte Chemie, 2016, 55(17): 5201-5205.
|
48 |
WANG Y, LU Y C. Isotopic labeling reveals active reaction interfaces for electrochemical oxidation of lithium peroxide[J]. Angewandte Chemie, 2019, 131(21): 7036-7040.
|