1 |
HAN X B, LU L G, ZHENG Y J, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: doi: 10.1016/j.etran.2019.100005.
|
2 |
XU B, LEE J, KWON D, et al. Mitigation strategies for Li-ion battery thermal runaway: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: doi: 10.1016/j.rser.2021.111437.
|
3 |
SUN P Y, BISSCHOP R, NIU H C, et al. A review of battery fires in electric vehicles[J]. Fire Technology, 2020, 56(4): 1361-1410.
|
4 |
WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131.
|
5 |
ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: A review[J]. Journal of Power Sources, 2016, 306: 178-192.
|
6 |
KONG L C, LI Y, FENG W. Strategies to solve lithium battery thermal runaway: From mechanism to modification[J]. Electrochemical Energy Reviews, 2021, 4(4): 633-679.
|
7 |
YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition, 2012, 51(24): 5798-5800.
|
8 |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
|
9 |
WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
|
10 |
MANDAL B K, PADHI A K, SHI Z, et al. Thermal runaway inhibitors for lithium battery electrolytes[J]. Journal of Power Sources, 2006, 161(2): 1341-1345.
|
11 |
BIENSAN P, SIMON B, PÉRÈS J P, et al. On safety of lithium-ion cells[J]. Journal of Power Sources, 1999, 81/82: 906-912.
|
12 |
ABRAHAM D P, ROTH E P, KOSTECKI R, et al. Diagnostic examination of thermally abused high-power lithium-ion cells[J]. Journal of Power Sources, 2006, 161(1): 648-657.
|
13 |
FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770.
|
14 |
NEWMAN J S, TOBIAS C W. Theoretical analysis of current distribution in porous electrodes[J]. Journal of the Electrochemical Society, 1962, 109(12): doi: 10.1149/1.2425269.
|
15 |
XIAO M, CHOE S Y. Dynamic modeling and analysis of a pouch type LiMn2O4/Carbon high power Li-polymer battery based on electrochemical-thermal principles[J]. Journal of Power Sources, 2012, 218: 357-367.
|
16 |
GHALKHANI M, BAHIRAEI F, NAZRI G A, et al. Electrochemical-thermal model of pouch-type lithium-ion batteries[J]. Electrochimica Acta, 2017, 247: 569-587.
|
17 |
CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
|
18 |
LI K, HU Z Y, MA J Z, et al. A 3D and stable lithium anode for high-performance lithium-iodine batteries[J]. Advanced Materials, 2019, 31(33): doi: 10.1002/adma.201902399.
|
19 |
LI S Y, LIU Q L, ZHOU J J, et al. Hierarchical Co3O4 nanofiber-carbon sheet skeleton with superior Na/Li-philic property enabling highly stable alkali metal batteries[J]. Advanced Functional Materials, 2019, 29(19): doi: 10.1002/adfm.201808847.
|
20 |
HUANG K, LIU Y, LIU H L. Understanding and predicting lithium crystal growth on perfect and defective interfaces: A Kohn-Sham density functional study[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 37239-37246.
|
21 |
YURKIV V, FOROOZAN T, RAMASUBRAMANIAN A, et al. Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior[J]. Electrochimica Acta, 2018, 265: 609-619.
|
22 |
LI Y S, LEUNG K, QI Y. Computational exploration of the Li-electrode|electrolyte interface in the presence of a nanometer thick solid-electrolyte interphase layer[J]. Accounts of Chemical Research, 2016, 49(10): 2363-2370.
|
23 |
ZHANG S Y, LIU Y, LIU H L. Understanding lithium transport in SEI films: A nonequilibrium molecular dynamics simulation[J]. Molecular Simulation, 2020, 46(7): 573-580.
|
24 |
CHENG H R, SUN Q J, LI L L, et al. Emerging era of electrolyte solvation structure and interfacial model in batteries[J]. ACS Energy Letters, 2022, 7(1): 490-513.
|
25 |
ZHU X M, JIANG X Y, AI X P, et al. Bis(2,2,2-trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery[J]. Electrochimica Acta, 2015, 165: 67-71.
|
26 |
YOU L, DUAN K J, ZHANG G B, et al. N,N-dimethylformamide electrolyte additive via a blocking strategy enables high-performance lithium-ion battery under high temperature[J]. The Journal of Physical Chemistry C, 2019, 123(10): 5942-5950.
|
27 |
QIAN Y X, CHU Y L, ZHENG Z T, et al. A new cyclic carbonate enables high power/low temperature lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 14-23.
|
28 |
MATSUOKA N, KAMINE H, NATSUME Y, et al. Moderately concentrated acetonitrile-containing electrolytes with high ionic conductivity for durability-oriented lithium-ion batteries[J]. Chem ElectroChem, 2021, 8(16): 3095-3104.
|
29 |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12.
|
30 |
LU W Q, YANG H, PRAKASH J. Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery[J]. Electrochimica Acta, 2006, 51(7): 1322-1329.
|
31 |
PETIT M, CALAS E, BERNARD J. A simplified electrochemical model for modelling Li-ion batteries comprising blend and bidispersed electrodes for high power applications[J]. Journal of Power Sources, 2020, 479: doi: 10.1016/j.jpowsour.2020.228766.
|
32 |
BERRUETA A, URTASUN A, URSÚA A, et al. A comprehensive model for lithium-ion batteries: From the physical principles to an electrical model[J]. Energy, 2018, 144: 286-300.
|
33 |
MIRANDA D, ALMEIDA A M, LANCEROS-MÉNDEZ S, et al. Effect of the active material type and battery geometry on the thermal behavior of lithium-ion batteries[J]. Energy, 2019, 185: 1250-1262.
|
34 |
ZHOU H W, PARMANANDA M, CROMPTON K R, et al. Effect of electrode crosstalk on heat release in lithium-ion batteries under thermal abuse scenarios[J]. Energy Storage Materials, 2022, 44: 326-341.
|
35 |
REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573.
|
36 |
WANG H M, SHI W J, HU F, et al. Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode[J]. Energy, 2021, 224: doi: 10.1016/j.energy. 2021.120072.
|
37 |
SAW L H, YE Y, TAY A A O. Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles[J]. Applied Energy, 2014, 131: 97-107.
|
38 |
XIE Y, HE X J, LI W, et al. A novel electro-thermal coupled model of lithium-ion pouch battery covering heat generation distribution and tab thermal behaviours[J]. International Journal of Energy Research, 2020, 44(14): 11725-11741.
|
39 |
PALS C R, NEWMAN J. Thermal modeling of the lithium/polymer battery (Ⅰ): Discharge behavior of a single cell[J]. Journal of the Electrochemical Society, 1995, 142(10): 3274-3281.
|
40 |
PALS C R, NEWMAN J. Thermal modeling of the lithium/polymer battery (Ⅱ): Temperature profiles in a cell stack[J]. Journal of the Electrochemical Society, 1995, 142(10): 3282-3288.
|
41 |
DU J L, TAO H L, CHEN Y X, et al. Thermal management of air-cooling lithium-ion battery pack[J]. Chinese Physics Letters, 2021, 38(11): doi: 10.1088/0256-307X/38/11/118201.
|
42 |
BOTTE G G, JOHNSON B A, WHITE R E. Influence of some design variables on the thermal behavior of a lithium-ion cell[J]. Journal of the Electrochemical Society, 1999, 146(3): 914-923.
|
43 |
SRINIVASAN V, WANG C Y. Analysis of electrochemical and thermal behavior of Li-ion cells[J]. Journal of the Electrochemical Society, 2002, 150(1): doi: 10.1149/1.1526512.
|
44 |
KUMARESAN K, SIKHA G, WHITE R E. Thermal model for a Li-ion cell[J]. Journal of the Electrochemical Society, 2007, 155(2): doi: 10.1149/1.2817888.
|
45 |
NING G, POPOV B N. Cycle life modeling of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2004, 151(10): doi: 10.1149/1.1787631.
|
46 |
GUO M, SIKHA G, WHITE R E. Single-particle model for a lithium-ion cell: Thermal behavior[J]. Journal of the Electrochemical Society, 2011, 158(2): A122-A132.
|
47 |
GUO G F, LONG B, CHENG B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195(8): 2393-2398.
|
48 |
WU S, BAI Y, LUAN W, et al. Thermal runaway model of high-nickel large format lithium-ion battery under thermal abuse conditions[C]//IOP Conference Series: Earth and Environmental Science, 2021.
|
49 |
AKINLABI A A H, SOLYALI D. Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 125: doi: 10.1016/j.rser.2020.109815.
|
50 |
LI X K, ZHAO J P, YUAN J L, et al. Simulation and analysis of air cooling configurations for a lithium-ion battery pack[J]. Journal of Energy Storage, 2021, 35: doi: 10.1016/j.est.2021.102270.
|
51 |
DUAN J B, ZHAO J P, LI X K, et al. Modeling and analysis of heat dissipation for liquid cooling lithium-ion batteries[J]. Energies, 2021, 14(14): doi: 10.3390/en14144187.
|
52 |
NA X Y, KANG H F, WANG T, et al. Reverse layered air flow for Li-ion battery thermal management[J]. Applied Thermal Engineering, 2018, 143: 257-262.
|
53 |
WANG T, TSENG K J, ZHAO J Y. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model[J]. Applied Thermal Engineering, 2015, 90: 521-529.
|
54 |
CHEN F F, HUANG R, WANG C M, et al. Air and PCM cooling for battery thermal management considering battery cycle life[J]. Applied Thermal Engineering, 2020, 173: doi: 10.1016/j.applthermaleng.2020.115154.
|
55 |
AKBARZADEH M, KALOGIANNIS T, JAGUEMONT J, et al. A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module[J]. Applied Thermal Engineering, 2021, 198: doi: 10.1016/j.applthermaleng.2021.117503.
|