储能科学与技术 ›› 2022, Vol. 11 ›› Issue (3): 852-865.doi: 10.19799/j.cnki.2095-4239.2022.0047
甘露雨1,2(), 陈汝颂1,2, 潘弘毅1,2, 吴思远1,2, 禹习谦1,2(), 李泓1,2
收稿日期:
2022-01-21
修回日期:
2022-02-05
出版日期:
2022-03-05
发布日期:
2022-03-11
通讯作者:
禹习谦
E-mail:ganluyu@qq.com;xyu@iphy.ac.cn
作者简介:
甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:基金资助:
Luyu GAN1,2(), Rusong CHEN1,2, Hongyi PAN1,2, Siyuan WU1,2, Xiqian YU1,2(), Hong LI1,2
Received:
2022-01-21
Revised:
2022-02-05
Online:
2022-03-05
Published:
2022-03-11
Contact:
Xiqian YU
E-mail:ganluyu@qq.com;xyu@iphy.ac.cn
摘要:
作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。
中图分类号:
甘露雨, 陈汝颂, 潘弘毅, 吴思远, 禹习谦, 李泓. 锂电池安全性多尺度研究策略:实验与模拟方法[J]. 储能科学与技术, 2022, 11(3): 852-865.
Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods[J]. Energy Storage Science and Technology, 2022, 11(3): 852-865.
1 | MURPHY D, BROADHEAD J, STEELE B. Materials for advanced batteries[M]. New York: Plenum Press, 1980. |
2 | NISHI Y. The development of lithium ion secondary batteries[J]. Chemical Record, 2001, 1(5): 406-413. |
3 | 吴娇杨, 刘品, 胡勇胜, 等. 锂离子电池和金属锂离子电池的能量密度计算[J]. 储能科学与技术, 2016, 5(4): 443-453. |
WU J Y, LIU P, HU Y S, et al. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4): 443-453. | |
4 | FOUCHARD D, TAYLOR J B. The molicel® rechargeable lithium system: Multicell aspects[J]. Journal of Power Sources, 1987, 21(3/4): 195-205. |
5 | 百度百科.三星电池门[EB/OL]. [2021-12-14].https://baike.baidu.com/item/%E4%B8%89%E6%98%9F%E7%94%B5%E6%B1%A0%E9%97%A8/19964149. |
6 | 电动观察.2021电动汽车安全年度报告[EB/OL]. [2022-01-06]. https://baijiahao.baidu.com/s?id=1721164341983283279&wfr=spider&for=pc. |
7 | 国际能源网.韩国1500 kW·h储能电站燃起大火!距上次火灾仅5天![EB/OL]. [2019-05-23]. https://www.in-en.com/article/html/energy-2312129.shtml. |
8 | 百度百科.4·16北京储能电站火灾事故[EB/OL]. [2022-01-11].https://baike.baidu.com/item/4%C2%B716%E5%8C%97%E4%BA%AC%E5%82%A8%E8%83%BD%E7%94%B5%E7%AB%99%E7%81%AB%E7%81%BE%E4%BA%8B%E6%95%85/56773365?fr=aladdin#2. |
9 | WEN J W, YU Y, CHEN C H. A review on lithium-ion batteries safety issues: Existing problems and possible solutions[J]. Materials Express, 2012, 2(3): 197-212. |
10 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
11 | MALEKI H, HOWARD J N. Internal short circuit in Li-ion cells[J]. Journal of Power Sources, 2009, 191(2): 568-574. |
12 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 热分析术语: GB/T 6425—2008[S]. 北京: 中国标准出版社, 2008. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Nomenclature for thermal analysis: GB/T 6425—2008[S]. Beijing: Standards Press of China, 2008. | |
13 | MALEKI H, DENG G P, ANANI A, et al. Thermal stability studies of Li-ion cells and components[J]. Journal of the Electrochemical Society, 1999, 146(9): 3224-3229. |
14 | LI Y L, GAO X L, FENG X N, et al. Battery eruption triggered by plated lithium on an anode during thermal runaway after fast charging[J]. Energy, 2022, 239: doi: 10.1016/j.energy.2021.122097. |
15 | YAMADA A, CHUNG S C, HINOKUMA K. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of the Electrochemical Society, 2001, 148(3): A224-A229. |
16 | ZHANG Z, FOUCHARD D, REA J R. Differential scanning calorimetry material studies: Implications for the safety of lithium-ion cells[J]. Journal of Power Sources, 1998, 70(1): 16-20. |
17 | NOH H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233: 121-130. |
18 | SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4): 320-324. |
19 | WANG Y, ZHANG Q H, XUE Z C, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances[J]. Advanced Energy Materials, 2020, 10(28): doi: 10.1002/aenm.202001413. |
20 | LI Y, LIU X, REN D S, et al. Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety[J]. Nano Energy, 2020, 71: doi: 10.1016/j.nanoen.2020.104643. |
21 | RICHARD M N, DAHN J R. Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte[J]. Journal of Power Sources, 1999, 79(2): 135-142. |
22 | MACNEIL D D, LARCHER D, DAHN J R. Comparison of the reactivity of various carbon electrode materials with electrolyte at elevated temperature[J]. Journal of the Electrochemical Society, 1999, 146(10): 3596-3602. |
23 | MACNEIL D D, CHRISTENSEN L, LANDUCCI J, et al. An autocatalytic mechanism for the reaction of LixCoO2 in electrolyte at elevated temperature[J]. Journal of the Electrochemical Society, 2000, 147(3): doi: 10.1149/1.1393299. |
24 | MACNEIL D D, DAHN J R. Can an electrolyte for lithium-ion batteries be too stable? [J]. Journal of the Electrochemical Society, 2003, 150(1): doi: 10.1149/1.1521756. |
25 | JIANG J, DAHN J R. ARC studies of the thermal stability of three different cathode materials: LiCoO2, Li[Ni0.1Co0.8Mn0.1]O2 and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes[J]. Electrochemistry Communications, 2004, 6(1): 39-43. |
26 | MA L, NIE M Y, XIA J, et al. A systematic study on the reactivity of different grades of charged Li[NixMnyCoz]O2 with electrolyte at elevated temperatures using accelerating rate calorimetry[J]. Journal of Power Sources, 2016, 327: 145-150. |
27 | HUANG Q, MA L, LIU A, et al. The reactivity of charged positive Li1- n[NixMnyCoz]O2 electrodes with electrolyte at elevated temperatures using accelerating rate calorimetry[J]. Journal of Power Sources, 2018, 390: 78-86. |
28 | CORMIER M M E, ZHANG N, LIU A, et al. Impact of dopants (Al, Mg, Mn, Co) on the reactivity of LixNiO2 with the electrolyte of Li-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(13): A2826-A2833. |
29 | ZHANG N, STARK J, LI H Y, et al. Effects of fluorine doping on nickel-rich positive electrode materials for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(8): doi: 10. 1149/1945-7111/ab8b00. |
30 | WANG Q S, SUN J H, YAO X L, et al. Thermal stability of LiPF6/EC+DEC electrolyte with charged electrodes for lithium ion batteries[J]. Thermochimica Acta, 2005, 437(1/2): 12-16. |
31 | NAM K W, YOON W S, YANG X Q. Structural changes and thermal stability of charged LiNi1/3Co1/3Mn1/3O2 cathode material for Li-ion batteries studied by time-resolved XRD[J]. Journal of Power Sources, 2009, 189(1): 515-518. |
32 | YOON W S, NAM K W, JANG D, et al. Structural study of the coating effect on the thermal stability of charged MgO-coated LiNi0.8Co0.2O2 cathodes investigated by in situ XRD[J]. Journal of Power Sources, 2012, 217: 128-134. |
33 | BAK S M, HU E Y, ZHOU Y N, et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22594-22601. |
34 | LIN F, LIU Y J, YU X Q, et al. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries[J]. Chemical Reviews, 2017, 117(21): 13123-13186. |
35 | LI J Y, HUA H M, KONG X B, et al. In-situ probing the near-surface structural thermal stability of high-nickel layered cathode materials[J]. Energy Storage Materials, 2022, 46: 90-99. |
36 | VAN DER VEN A, AYDINOL M K, CEDER G. First-principles evidence for stage ordering in LixCoO2[J]. Journal of the Electrochemical Society, 1998, 145(6): 2149-2155. |
37 | RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chemistry of Materials, 2016, 28(1): 266-273. |
38 | XIAO Y H, MIARA L J, WANG Y, et al. Computational screening of cathode coatings for solid-state batteries[J]. Joule, 2019, 3(5): 1252-1275. |
39 | CHENG T, MERINOV B V, MOROZOV S, et al. Quantum mechanics reactive dynamics study of solid Li-electrode/Li6PS5Cl-electrolyte interface[J]. ACS Energy Letters, 2017, 2(6): 1454-1459. |
40 | ZHOU G, SUN X R, LI Q H, et al. Mn ion dissolution mechanism for lithium-ion battery with LiMn2O4 cathode: in situ ultraviolet-visible spectroscopy and ab initio molecular dynamics simulations[J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 3051-3057. |
41 | 国家市场监督管理总局, 国家标准化管理委员会. 电动汽车用动力蓄电池安全要求: GB 38031—2020[S]. 北京: 中国标准出版社, 2020. |
42 | SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. |
43 | FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301. |
44 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. |
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016. | |
45 | ZHANG Z J, RAMADASS P, FANG W F. Safety of lithium-ion batteries[M]. Amsterdam: Elsevier, 2014: 409-435. |
46 | ZHAO R, LIU J, GU J J. A comprehensive study on Li-ion battery nail penetrations and the possible solutions[J]. Energy, 2017, 123: 392-401. |
47 | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. |
48 | LIU X, REN D S, HSU H, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2(10): 2047-2064. |
49 | LI Y L, FENG X N, REN D S, et al. Thermal runaway triggered by plated lithium on the anode after fast charging[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46839-46850. |
50 | FINEGAN D P, TJADEN B, HEENAN T M M, et al. Tracking internal temperature and structural dynamics during nail penetration of lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(13): A3285-A3291. |
51 | YOKOSHIMA T, MUKOYAMA D, MAEDA F, et al. Direct observation of internal state of thermal runaway in lithium ion battery during nail-penetration test[J]. Journal of Power Sources, 2018, 393: 67-74. |
52 | FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms7924. |
53 | 胡荣祖, 高胜利, 赵凤起. 热分析动力学[M]. 2版. 北京: 科学出版社, 2008. |
HU R Z, GAO S L, ZHAO F Q. Thermal analysis kinetics[M]. 2nd Editon, Beijing: Science Press, 2008. | |
54 | HATCHARD T D, MACNEIL D D, BASU A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the Electrochemical Society, 2001, 148(7): A755. |
55 | FENG X N, HE X M, OUYANG M G, et al. Thermal runaway propagation model for designing a safer battery pack with 25 A·h LiNixCoyMnzO2 large format lithium ion battery[J]. Applied Energy, 2015, 154: 74-91. |
56 | REN D S, LIU X, FENG X N, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228: 633-644. |
57 | KIM G H, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2): 476-489. |
58 | GUO M, KIM G H, WHITE R E. A three-dimensional multi-physics model for a Li-ion battery[J]. Journal of Power Sources, 2013, 240: 80-94. |
59 | FENG X, HE X, LU L, et al. Analysis on the fault features for internal short circuit detection using an electrochemical-thermal coupled model[J]. Journal of the Electrochemical Society, 2018, 165(2): A155-A167. |
60 | YANG X G, WANG C Y. Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries[J]. Journal of Power Sources, 2018, 402: 489-498. |
61 | LI H, DUAN Q L, ZHAO C P, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Journal of Hazardous Materials, 2019, 375: 241-254. |
62 | FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273. |
63 | 黄沛丰. 锂离子电池火灾危险性及热失控临界条件研究[D]. 合肥: 中国科学技术大学, 2018. |
HUANG P F. Research on the fire risk of lithium ion battery and the critical condition of thermal runaway behavior[D]. Hefei: University of Science and Technology of China, 2018. | |
64 | DOUGHTY D H, ROTH E P, CRAFTS C C, et al. Effects of additives on thermal stability of Li ion cells[J]. Journal of Power Sources, 2005, 146(1/2): 116-120. |
65 | SAID A O, LEE C, STOLIAROV S I, et al. Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays[J]. Applied Energy, 2019, 248: 415-428. |
66 | HUANG L, XU G J, DU X F, et al. Uncovering LiH triggered thermal runaway mechanism of a high-energy LiNi0.5Co0.2Mn0.3O2/graphite pouch cell[J]. Advanced Science, 2021, 8(14): doi: 10. 1002/advs.2021006766. |
67 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. |
68 | ZHAI H J, LI H, PING P, et al. An experimental-based Domino prediction model of thermal runaway propagation in 18, 650 lithium-ion battery modules[J]. International Journal of Heat and Mass Transfer, 2021, 181: doi: 10.1016/j.ijheatmasstransfer.2021. 122024. |
69 | CHEN R S, NOLAN A M, LU J Z, et al. The thermal stability of lithium solid electrolytes with metallic lithium[J]. Joule, 2020, 4(4): 812-821. |
70 | CHEN R S, YAO C X, YANG Q, et al. Enhancing the thermal stability of NASICON solid electrolyte pellets against metallic lithium by defect modification[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18743-18749. |
71 | HOU J, LU L, WANG L, et al. Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes[J]. Nature Communications, 2020, 11: doi: 10.1038/s41467-020-18868-w. |
72 | CAO W Z, ZHANG J N, LI H. Batteries with high theoretical energy densities[J]. Energy Storage Materials, 2020, 26: 46-55. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[7] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[8] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[9] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[10] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[11] | 叶文兰, 赵明, 胡明禹, 田扬. 管束式相变蓄热器的蓄放热性能分析[J]. 储能科学与技术, 2022, 11(7): 2151-2160. |
[12] | 李仲博, 汉京晓, 王成成, 杨慧, 杨娜, 尹少武, 王立, 童莉葛, 唐志伟, 丁玉龙. 热化学反应器放热过程模拟及参数影响规律[J]. 储能科学与技术, 2022, 11(7): 2133-2140. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[15] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||