储能科学与技术 ›› 2022, Vol. 11 ›› Issue (3): 866-877.doi: 10.19799/j.cnki.2095-4239.2022.0003
杜江龙1,2(), 林伊婷1,3(
), 杨雯棋1,3(
), 练成1,2(
), 刘洪来1,2
收稿日期:
2022-01-04
修回日期:
2022-01-30
出版日期:
2022-03-05
发布日期:
2022-03-11
通讯作者:
练成
E-mail:2294567652@qq.com;lyt757418204@163.com;ywq785459103@163.com;liancheng@ecust.edu.cn
作者简介:
杜江龙(1995—),男,博士研究生,研究方向为锂离子电池热管理多尺度建模,E-mail:基金资助:
Jianglong DU1,2(), Yiting LIN1,3(
), Wenqi YANG1,3(
), Cheng LIAN1,2(
), Honglai LIU1,2
Received:
2022-01-04
Revised:
2022-01-30
Online:
2022-03-05
Published:
2022-03-11
Contact:
Cheng LIAN
E-mail:2294567652@qq.com;lyt757418204@163.com;ywq785459103@163.com;liancheng@ecust.edu.cn
摘要:
随着锂离子电池的广泛使用,锂离子电池热安全问题日益突出。相比于成本高、破坏性大的实验方法,建模仿真因其经济、安全、快速等优势成为锂离子电池热安全研究的重要手段。本文从微观建模、单电池建模以及电池组建模三个尺度对最新的锂离子电池模型及其在热安全设计中的应用进行了综述。着重介绍了锂枝晶的生长调控和电解液的安全设计方面的模拟仿真、单电池模型与热方程耦合的应用以及锂离子电池组热模型在优化电池热管理系统方面的研究。最后总结了现有的锂离子电池热模型存在的缺陷,并对锂离子电池热模型未来的研究方法做出了展望。
中图分类号:
杜江龙, 林伊婷, 杨雯棋, 练成, 刘洪来. 模拟仿真在锂离子电池热安全设计中的应用[J]. 储能科学与技术, 2022, 11(3): 866-877.
Jianglong DU, Yiting LIN, Wenqi YANG, Cheng LIAN, Honglai LIU. Application of simulation in thermal safety design of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 866-877.
1 | HAN X B, LU L G, ZHENG Y J, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: doi: 10.1016/j.etran.2019.100005. |
2 | XU B, LEE J, KWON D, et al. Mitigation strategies for Li-ion battery thermal runaway: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: doi: 10.1016/j.rser.2021.111437. |
3 | SUN P Y, BISSCHOP R, NIU H C, et al. A review of battery fires in electric vehicles[J]. Fire Technology, 2020, 56(4): 1361-1410. |
4 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. |
5 | ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: A review[J]. Journal of Power Sources, 2016, 306: 178-192. |
6 | KONG L C, LI Y, FENG W. Strategies to solve lithium battery thermal runaway: From mechanism to modification[J]. Electrochemical Energy Reviews, 2021, 4(4): 633-679. |
7 | YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition, 2012, 51(24): 5798-5800. |
8 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
9 | WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. |
10 | MANDAL B K, PADHI A K, SHI Z, et al. Thermal runaway inhibitors for lithium battery electrolytes[J]. Journal of Power Sources, 2006, 161(2): 1341-1345. |
11 | BIENSAN P, SIMON B, PÉRÈS J P, et al. On safety of lithium-ion cells[J]. Journal of Power Sources, 1999, 81/82: 906-912. |
12 | ABRAHAM D P, ROTH E P, KOSTECKI R, et al. Diagnostic examination of thermally abused high-power lithium-ion cells[J]. Journal of Power Sources, 2006, 161(1): 648-657. |
13 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
14 | NEWMAN J S, TOBIAS C W. Theoretical analysis of current distribution in porous electrodes[J]. Journal of the Electrochemical Society, 1962, 109(12): doi: 10.1149/1.2425269. |
15 | XIAO M, CHOE S Y. Dynamic modeling and analysis of a pouch type LiMn2O4/Carbon high power Li-polymer battery based on electrochemical-thermal principles[J]. Journal of Power Sources, 2012, 218: 357-367. |
16 | GHALKHANI M, BAHIRAEI F, NAZRI G A, et al. Electrochemical-thermal model of pouch-type lithium-ion batteries[J]. Electrochimica Acta, 2017, 247: 569-587. |
17 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
18 | LI K, HU Z Y, MA J Z, et al. A 3D and stable lithium anode for high-performance lithium-iodine batteries[J]. Advanced Materials, 2019, 31(33): doi: 10.1002/adma.201902399. |
19 | LI S Y, LIU Q L, ZHOU J J, et al. Hierarchical Co3O4 nanofiber-carbon sheet skeleton with superior Na/Li-philic property enabling highly stable alkali metal batteries[J]. Advanced Functional Materials, 2019, 29(19): doi: 10.1002/adfm.201808847. |
20 | HUANG K, LIU Y, LIU H L. Understanding and predicting lithium crystal growth on perfect and defective interfaces: A Kohn-Sham density functional study[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 37239-37246. |
21 | YURKIV V, FOROOZAN T, RAMASUBRAMANIAN A, et al. Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior[J]. Electrochimica Acta, 2018, 265: 609-619. |
22 | LI Y S, LEUNG K, QI Y. Computational exploration of the Li-electrode|electrolyte interface in the presence of a nanometer thick solid-electrolyte interphase layer[J]. Accounts of Chemical Research, 2016, 49(10): 2363-2370. |
23 | ZHANG S Y, LIU Y, LIU H L. Understanding lithium transport in SEI films: A nonequilibrium molecular dynamics simulation[J]. Molecular Simulation, 2020, 46(7): 573-580. |
24 | CHENG H R, SUN Q J, LI L L, et al. Emerging era of electrolyte solvation structure and interfacial model in batteries[J]. ACS Energy Letters, 2022, 7(1): 490-513. |
25 | ZHU X M, JIANG X Y, AI X P, et al. Bis(2,2,2-trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery[J]. Electrochimica Acta, 2015, 165: 67-71. |
26 | YOU L, DUAN K J, ZHANG G B, et al. N,N-dimethylformamide electrolyte additive via a blocking strategy enables high-performance lithium-ion battery under high temperature[J]. The Journal of Physical Chemistry C, 2019, 123(10): 5942-5950. |
27 | QIAN Y X, CHU Y L, ZHENG Z T, et al. A new cyclic carbonate enables high power/low temperature lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 14-23. |
28 | MATSUOKA N, KAMINE H, NATSUME Y, et al. Moderately concentrated acetonitrile-containing electrolytes with high ionic conductivity for durability-oriented lithium-ion batteries[J]. Chem ElectroChem, 2021, 8(16): 3095-3104. |
29 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. |
30 | LU W Q, YANG H, PRAKASH J. Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery[J]. Electrochimica Acta, 2006, 51(7): 1322-1329. |
31 | PETIT M, CALAS E, BERNARD J. A simplified electrochemical model for modelling Li-ion batteries comprising blend and bidispersed electrodes for high power applications[J]. Journal of Power Sources, 2020, 479: doi: 10.1016/j.jpowsour.2020.228766. |
32 | BERRUETA A, URTASUN A, URSÚA A, et al. A comprehensive model for lithium-ion batteries: From the physical principles to an electrical model[J]. Energy, 2018, 144: 286-300. |
33 | MIRANDA D, ALMEIDA A M, LANCEROS-MÉNDEZ S, et al. Effect of the active material type and battery geometry on the thermal behavior of lithium-ion batteries[J]. Energy, 2019, 185: 1250-1262. |
34 | ZHOU H W, PARMANANDA M, CROMPTON K R, et al. Effect of electrode crosstalk on heat release in lithium-ion batteries under thermal abuse scenarios[J]. Energy Storage Materials, 2022, 44: 326-341. |
35 | REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. |
36 | WANG H M, SHI W J, HU F, et al. Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode[J]. Energy, 2021, 224: doi: 10.1016/j.energy. 2021.120072. |
37 | SAW L H, YE Y, TAY A A O. Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles[J]. Applied Energy, 2014, 131: 97-107. |
38 | XIE Y, HE X J, LI W, et al. A novel electro-thermal coupled model of lithium-ion pouch battery covering heat generation distribution and tab thermal behaviours[J]. International Journal of Energy Research, 2020, 44(14): 11725-11741. |
39 | PALS C R, NEWMAN J. Thermal modeling of the lithium/polymer battery (Ⅰ): Discharge behavior of a single cell[J]. Journal of the Electrochemical Society, 1995, 142(10): 3274-3281. |
40 | PALS C R, NEWMAN J. Thermal modeling of the lithium/polymer battery (Ⅱ): Temperature profiles in a cell stack[J]. Journal of the Electrochemical Society, 1995, 142(10): 3282-3288. |
41 | DU J L, TAO H L, CHEN Y X, et al. Thermal management of air-cooling lithium-ion battery pack[J]. Chinese Physics Letters, 2021, 38(11): doi: 10.1088/0256-307X/38/11/118201. |
42 | BOTTE G G, JOHNSON B A, WHITE R E. Influence of some design variables on the thermal behavior of a lithium-ion cell[J]. Journal of the Electrochemical Society, 1999, 146(3): 914-923. |
43 | SRINIVASAN V, WANG C Y. Analysis of electrochemical and thermal behavior of Li-ion cells[J]. Journal of the Electrochemical Society, 2002, 150(1): doi: 10.1149/1.1526512. |
44 | KUMARESAN K, SIKHA G, WHITE R E. Thermal model for a Li-ion cell[J]. Journal of the Electrochemical Society, 2007, 155(2): doi: 10.1149/1.2817888. |
45 | NING G, POPOV B N. Cycle life modeling of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2004, 151(10): doi: 10.1149/1.1787631. |
46 | GUO M, SIKHA G, WHITE R E. Single-particle model for a lithium-ion cell: Thermal behavior[J]. Journal of the Electrochemical Society, 2011, 158(2): A122-A132. |
47 | GUO G F, LONG B, CHENG B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195(8): 2393-2398. |
48 | WU S, BAI Y, LUAN W, et al. Thermal runaway model of high-nickel large format lithium-ion battery under thermal abuse conditions[C]//IOP Conference Series: Earth and Environmental Science, 2021. |
49 | AKINLABI A A H, SOLYALI D. Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 125: doi: 10.1016/j.rser.2020.109815. |
50 | LI X K, ZHAO J P, YUAN J L, et al. Simulation and analysis of air cooling configurations for a lithium-ion battery pack[J]. Journal of Energy Storage, 2021, 35: doi: 10.1016/j.est.2021.102270. |
51 | DUAN J B, ZHAO J P, LI X K, et al. Modeling and analysis of heat dissipation for liquid cooling lithium-ion batteries[J]. Energies, 2021, 14(14): doi: 10.3390/en14144187. |
52 | NA X Y, KANG H F, WANG T, et al. Reverse layered air flow for Li-ion battery thermal management[J]. Applied Thermal Engineering, 2018, 143: 257-262. |
53 | WANG T, TSENG K J, ZHAO J Y. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model[J]. Applied Thermal Engineering, 2015, 90: 521-529. |
54 | CHEN F F, HUANG R, WANG C M, et al. Air and PCM cooling for battery thermal management considering battery cycle life[J]. Applied Thermal Engineering, 2020, 173: doi: 10.1016/j.applthermaleng.2020.115154. |
55 | AKBARZADEH M, KALOGIANNIS T, JAGUEMONT J, et al. A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module[J]. Applied Thermal Engineering, 2021, 198: doi: 10.1016/j.applthermaleng.2021.117503. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 729
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 418
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||