1 |
CHAO D L, ZHOU W H, XIE F X, et al. Roadmap for advanced aqueous batteries: From design of materials to applications[J]. Science Advances, 2020, 6(21): doi: 10.1126/sciadv.aba4098.
|
2 |
CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
|
3 |
LIN F, MARKUS I M, DOEFF M M, et al. Chemical and structural stability of lithium-ion battery electrode materials under electron beam[J]. Scientific Reports, 2014, 4: doi: 10.1038/srep05694.
|
4 |
KUSHIMA A, SO K P, SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279.
|
5 |
KUSHIMA A, SO K P, SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279.
|
6 |
LIU H, CHENG X B, JIN Z H, et al. Recent advances in understanding dendrite growth on alkali metal anodes[J]. EnergyChem, 2019, 1(1): doi: 10.1016/j.enchem.2019.100003.
|
7 |
CHOUDHURY S, WEI S, OZHABES Y, et al. Designing solid-liquid interphases for sodium batteries[J]. Nature Communications, 2017, 8: doi: 10.1038/s41467-017-00742-x.
|
8 |
WANG Q, ZHANG G, LI Y, et al. Application of phase-field method in rechargeable batteries[J]. npj Computational Materials, 2020, 6: 1-8.
|
9 |
ZHANG G, WANG Q, SHA L T, et al. Phase-field model and its application in electrochemical energy storage materials[J]. Acta Physica Sinica, 2020, 69(22): doi: 10.7498/aps.69.20201411.
|
10 |
ELY D R, GARCÍA R E. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes[J]. Journal of the Electrochemical Society, 2013, 160(4): A662-A668.
|
11 |
GREGORY T D, HOFFMAN R J, WINTERTON R C. Nonaqueous electrochemistry of magnesium: Applications to energy storage[J]. Journal of the Electrochemical Society, 1990, 137(3): 775-780.
|
12 |
MATSUI M. Study on electrochemically deposited Mg metal[J]. Journal of Power Sources, 2011, 196(16): 7048-7055.
|
13 |
LING C, BANERJEE D, MATSUI M. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology[J]. Electrochimica Acta, 2012, 76: 270-274.
|
14 |
JÄCKLE M, GROß A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth[J]. The Journal of Chemical Physics, 2014, 141(17): doi: 10.1063/1.4901055.
|
15 |
CHAZALVIEL J. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1990, 42(12): 7355-7367.
|
16 |
BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. Dendritic growth mechanisms in lithium/polymer cells[J]. Journal of Power Sources, 1999, 81/82: 925-929.
|
17 |
WANG A, KADAM S, LI H, et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. npj Computational Materials, 2018, 4: doi: 10.1038/s41524-018-0064-0.
|
18 |
DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456.
|
19 |
GUYER J E, BOETTINGER W J, WARREN J A, et al. Phase field modeling of electrochemistry. Ⅰ. equilibrium[J]. Physical Review E, 2004, 69(2): doi: 10.1103/PhysRevE.69.021603.
|
20 |
GUYER J E, BOETTINGER W J, WARREN J A, et al. Phase field modeling of electrochemistry. Ⅱ. kinetics[J]. Physical Review E, 2004, 69(2): doi: 10.1103/PhysRevE.69.021604.
|
21 |
SHIBUTA Y, OKAJIMA Y, SUZUKI T. Phase-field modeling for electrodeposition process[J]. Science and Technology of Advanced Materials, 2007, 8(6): 511-518.
|
22 |
OKAJIMA Y, SHIBUTA Y, SUZUKI T. A phase-field model for electrode reactions with Butler-Volmer kinetics[J]. Computational Materials Science, 2010, 50(1): 118-124.
|
23 |
LIANG L Y, QI Y, XUE F, et al. Nonlinear phase-field model for electrode-electrolyte interface evolution[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2012, 86: doi: 10.1103/PhysRevE.86.051609.
|
24 |
LIANG L Y, CHEN L Q. Nonlinear phase field model for electrodeposition in electrochemical systems[J]. Applied Physics Letters, 2014, 105(26): doi: 10.1063/1.4905341.
|
25 |
CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385.
|
26 |
YURKIV V, FOROOZAN T, RAMASUBRAMANIAN A, et al. Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior[J]. Electrochimica Acta, 2018, 265: 609-619.
|
27 |
ZHENG R T, QIAN S S, CHENG X, et al. FeNb11O29 nanotubes: Superior electrochemical energy storage performance and operating mechanism[J]. Nano Energy, 2019, 58: 399-409.
|
28 |
HONG Z J, VISWANATHAN V. Phase-field simulations of lithium dendrite growth with open-source software[J]. ACS Energy Letters, 2018, 3(7): 1737-1743.
|
29 |
HONG Z J, VISWANATHAN V. Prospect of thermal shock induced healing of lithium dendrite[J]. ACS Energy Letters, 2019, 4(5): 1012-1019.
|
30 |
JANA A, WOO S I, VIKRANT K S N, et al. Electrochemomechanics of lithium dendrite growth[J]. Energy & Environmental Science, 2019, 12(12): 3595-3607.
|
31 |
TIAN H K, LIU Z, JI Y Z, et al. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes[J]. Chemistry of Materials, 2019, 31(18): 7351-7359.
|
32 |
ZHANG R, SHEN X, CHENG X B, et al. The dendrite growth in 3D structured lithium metal anodes: Electron or ion transfer limitation?[J]. Energy Storage Materials, 2019, 23: 556-565.
|
33 |
SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries?[J]. Advanced Energy Materials, 2021, 11(10): doi: 10.1002/aenm.202003416.
|
34 |
SHEN X, ZHANG R, WANG S H, et al. The dynamic evolution of aggregated lithium dendrites in lithium metal batteries[J]. Chinese Journal of Chemical Engineering, 2021, 37: 137-143.
|
35 |
CHEN C H, PAO C W. Phase-field study of dendritic morphology in lithium metal batteries[J]. Journal of Power Sources, 2021, 484: doi: 10.1016/j.jpowsour.2020.229203.
|
36 |
ZHANG J W, LIU Y P, WANG C G, et al. An electrochemical-mechanical phase field model for lithium dendrite[J]. Journal of the Electrochemical Society, 2021, 168(9): doi: 10.1149/1945-7111/ac22c7.
|
37 |
HONG Z J, AHMAD Z, VISWANATHAN V. Design principles for dendrite suppression with porous polymer/aqueous solution hybrid electrolyte for Zn metal anodes[J]. ACS Energy Letters, 2020, 5(8): 2466-2474.
|
38 |
REN Y, ZHOU Y, CAO Y. Inhibit of lithium dendrite growth in solid composite electrolyte by phase-field modeling[J]. The Journal of Physical Chemistry C, 2020, 124(23): 12195-12204.
|
39 |
TAN J W, TARTAKOVSKY A M, FERRIS K, et al. Investigating the effects of anisotropic mass transport on dendrite growth in high energy density lithium batteries[J]. Journal of the Electrochemical Society, 2015, 163(2): A318-A327.
|
40 |
AHMAD Z, HONG Z J, VISWANATHAN V. Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(43): 26672-26680.
|
41 |
LI G, LIU Z, HUANG Q, et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects[J]. Nature Energy, 2018, 3(12): 1076-1083.
|
42 |
JANA A, ELY D R, GARCÍA R E. Dendrite-separator interactions in lithium-based batteries[J]. Journal of Power Sources, 2015, 275: 912-921.
|
43 |
YANG J L, WANG C Y, WANG C C, et al. Advanced nanoporous separators for stable lithium metal electrodeposition at ultra-high current densities in liquid electrolytes[J]. Journal of Materials Chemistry A, 2020, 8(10): 5095-5104.
|