储能科学与技术 ›› 2022, Vol. 11 ›› Issue (4): 1226-1235.doi: 10.19799/j.cnki.2095-4239.2022.0038
王星星1(), 宋子钰1, 吴浩1, 冯文芳1, 周志彬1, 张恒1,2()
收稿日期:
2022-01-19
修回日期:
2022-02-17
出版日期:
2022-04-05
发布日期:
2022-04-11
通讯作者:
张恒
E-mail:2457609075@qq.com;hengzhang2020@hust.edu.cn
作者简介:
王星星(1995—),女,博士研究生,研究方向为导电锂盐和聚合物电解质,E-mail:基金资助:
Xingxing WANG1(), Ziyu SONG1, Hao WU1, Wenfang FENG1, Zhibin ZHOU1, Heng ZHANG1,2()
Received:
2022-01-19
Revised:
2022-02-17
Online:
2022-04-05
Published:
2022-04-11
Contact:
Heng ZHANG
E-mail:2457609075@qq.com;hengzhang2020@hust.edu.cn
摘要:
固态聚合物电解质(solid polymer electrolytes,SPEs)具有不易泄漏、易加工、抑制锂枝晶生长等优点,能提高固态金属锂电池(solid-state lithium metal batteries,SSLMBs)的循环寿命和安全性。导电锂盐作为SPEs的必要组分之一,不仅能够为其离子输运提供锂离子源,而且能够在电极表面发生化学或电化学反应,参与电极/SPE界面膜的构建。因此,导电锂盐的分子结构对于调控SPEs的基础物理和电化学性质及其与电极材料的界面性能有着重要的影响。结合本团队在SPEs导电锂盐领域的相关研究工作,本文主要介绍全氟代和部分氟代磺酰亚胺锂盐作为SPEs导电盐的研究进展,并探讨了SPEs导电锂盐的未来发展方向。
中图分类号:
王星星, 宋子钰, 吴浩, 冯文芳, 周志彬, 张恒. 固态聚合物电解质导电锂盐的研究进展[J]. 储能科学与技术, 2022, 11(4): 1226-1235.
Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes[J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235.
1 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
2 | 吴娇杨, 刘品, 胡勇胜, 等. 锂离子电池和金属锂离子电池的能量密度计算[J]. 储能科学与技术, 2016, 5(4): 443-453. |
WU J Y, LIU P, HU Y S, et al. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4): 443-453. | |
3 | QIAO L X, JUDEZ X, ROJO T, et al. Review—Polymer electrolytes for sodium batteries[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab7aao. |
4 | 杜奥冰, 柴敬超, 张建军, 等. 锂电池用全固态聚合物电解质的研究进展[J]. 储能科学与技术, 2016, 5(5): 627-648. |
DU A B, CHAI J C, ZHANG J J, et al. All-solid-state lithium-ion batteries based on polymer electrolytes: State of the art, challenges and future trends[J]. Energy Storage Science and Technology, 2016, 5(5): 627-648. | |
5 | 张丙凯, 杨卢奕, 李舜宁, 等. 固态电解质中锂离子传输机理研究进展[J]. 电化学, 2021, 27(3): 269-277. |
ZHANG B K, YANG L Y, LI S N, et al. Progress of lithium-ion transport mechanism in solid-state electrolytes[J]. Journal of Electrochemistry, 2021, 27(3): 269-277. | |
6 | 李泓, 许晓雄. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5): 607-614. |
LI H, XU X X. R & D vision and strategies on solid lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 607-614. | |
7 | 梁大宇, 包婷婷, 高田慧, 等. 锂离子电池固态电解质界面膜(SEI)的研究进展[J]. 储能科学与技术, 2018, 7(3): 418-423. |
LIANG D Y, BAO T T, GAO T H, et al. Research progress of lithium ion battery solid-electrolyte interface(SEI)[J]. Energy Storage Science and Technology, 2018, 7(3): 418-423. | |
8 | 凌志军, 何向明, 李建军, 等. 锂离子聚合物常温固体电解质的研究进展[J]. 化学进展, 2006, 18(4): 459-466. |
LING Z J, HE X M, LI J J, et al. Recent advances of all-solid-state polymer electrolyte for Li-ion batteries[J]. Progress in Chemistry, 2006, 18(4): 459-466. | |
9 | 邹文洪, 樊佑, 张焱焱, 等. 安全固态锂电池室温聚合物基电解质的研究进展[J]. 化工进展, 2021, 40(9): 5029-5044. |
ZOU W H, FAN Y, ZHANG Y Y, et al. Research progress on room-temperature polymer-based electrolytes for safe solid-state lithium batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5029-5044. | |
10 | 刘大凡. 新型含氟磺酰亚胺锂盐聚合物固体电解质研究[D]. 武汉: 华中科技大学, 2005. |
LIU D F. Characterizations of lithium perfluoro-alkoxy (-phenoxy) sulfonylimides for solid polymer electrolytes[D]. Wuhan: Huazhong University of Science and Technology, 2005. | |
11 | 何向明, 蒲薇华, 王莉, 等. 锂离子塑性晶体常温固体电解质[J]. 化学进展, 2006, 18(1): 24-29. |
HE X M, PU W H, WANG L, et al. Plastic crystals: An effective ambient temperature all-solid-state electrolyte for lithium batteries[J]. Progress in Chemistry, 2006, 18(1): 24-29. | |
12 | 崔孟忠, 李竹云, 张洁, 等. 硅氧烷基聚合物电解质[J]. 化学进展, 2008, 20(12): 1987-1997. |
CUI M Z, LI Z Y, ZHANG J, et al. Siloxane-based polymer electrolytes[J]. Progress in Chemistry, 2008, 20(12): 1987-1997. | |
13 | 张恒, 郑丽萍, 聂进, 等. 锂单离子导电固态聚合物电解质[J]. 化学进展, 2014, 26(6): 1005-1020. |
ZHANG H, ZHENG L P, NIE J, et al. Single lithium-ion conducting solid polymer electrolytes[J]. Progress in Chemistry, 2014, 26(6): 1005-1020. | |
14 | BRESSER D, HOSOI K, HOWELL D, et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA[J]. Journal of Power Sources, 2018, 382: 176-178. |
15 | FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589. |
16 | KÄRGER J. Fast ion transport in solids[J]. Zeitschrift Für Physikalische Chemie, 1995, 189(2): 274-275. |
17 | ARMAND M, CHABAGNO J, DUCLOT M. Second International Meeting on Solid Electrolytes [C]//St.Andrews, 1978. |
18 | ARMAND M B. Polymer electrolytes[J]. Annual Review of Materials Science, 1986, 16: 245-261. |
19 | XUE Z G, HE D, XIE X L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. |
20 | HALLINAN D T Jr, VILLALUENGA I, BALSARA N P. Polymer and composite electrolytes[J]. MRS Bulletin, 2018, 43(10): 759-767. |
21 | 张恒. 含双(氟磺酰)亚胺阴离子的纯固态聚合物电解质的制备、表征及性质[D]. 武汉: 华中科技大学, 2015. |
ZHANG H. Solid polymer electrolytes based on bis(fluorosulfonyl)imide anion: Synthesis, characterization, and properties[D]. Wuhan: Huazhong University of Science and Technology, 2015. | |
22 | 吴勰, 周莉, 薛照明. 基于螯合B类锂盐的固态聚合物电解质的合成及其性能[J]. 储能科学与技术, 2021, 10(1): 96-103. |
WU X, ZHOU L, XUE Z M. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts[J]. Energy Storage Science and Technology, 2021, 10(1): 96-103. | |
23 | ZHANG H, FENG W F, ZHOU Z B, et al. Composite electrolytes of lithium salt/polymeric ionic liquid with bis(fluorosulfonyl)imide[J]. Solid State Ionics, 2014, 256: 61-67. |
24 | ZHANG H, LI L, FENG W F, et al. Polymeric ionic liquids based on ether functionalized ammoniums and perfluorinated sulfonimides[J]. Polymer, 2014, 55(16): 3339-3348. |
25 | ZHANG H, LIU C Y, ZHENG L P, et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte[J]. Electrochimica Acta, 2014, 133: 529-538. |
26 | ZHANG H, LIU C Y, ZHENG L P, et al. Solid polymer electrolyte comprised of lithium salt/ether functionalized ammonium-based polymeric ionic liquid with bis(fluorosulfonyl)imide[J]. Electrochimica Acta, 2015, 159: 93-101. |
27 | 程新兵, 张强. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72. |
CHENG X B, ZHANG Q. Growth mechanisms and suppression strategies of lithium metal dendrites[J]. Progress in Chemistry, 2018, 30(1): 51-72. | |
28 | 赵辰孜, 袁洪, 卢洋, 等. 固态金属锂负极界面研究进展[J]. 化工进展, 2021, 40(9): 4986-4997. |
ZHAO C Z, YUAN H, LU Y, et al. Review on interfaces in solid-state lithium metal anodes[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4986-4997. | |
29 | HE X, NI Y X, HOU Y P, et al. Insights into the ionic conduction mechanism of quasi-solid polymer electrolytes through multispectral characterization[J]. Angewandte Chemie International Edition, 2021, 60(42): 22672-22677. |
30 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. ChemInform, 2004, 104(10): 4303-4418. |
31 | QIAO L X, CUI Z L, CHEN B B, et al. A promising bulky anion based lithium borate salt for lithium metal batteries[J]. Chemical Science, 2018, 9(14): 3451-3458. |
32 | WANG C, WANG T, WANG L L, et al. Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery[J]. Advanced Science, 2019, 6(22): doi: 10.1002/advs.201901036. |
33 | SHANGGUAN X H, XU G J, CUI Z L, et al. Additive-assisted novel dual-salt electrolyte addresses wide temperature operation of lithium-metal batteries[J]. Small, 2019, 15(16): doi: 10.1002/smll.201900269. |
34 | WANG Q L, CUI Z L, ZHOU Q, et al. A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries[J]. Energy Storage Materials, 2020, 25: 756-763. |
35 | ZHOU M H, LIU R L, JIA D Y, et al. Ultrathin yet robust single lithium-ion conducting quasi-solid-state polymer-brush electrolytes enable ultralong-life and dendrite-free lithium-metal batteries[J]. Advanced Materials, 2021, 33(29): doi: 10.1002/adma.202100943. |
36 | DESHPANDE V K, SINGH K. Effect of LiX(X=F, Cl, Br, I) and Na2SO4 on the electrical conducticity of Li2SO4: Li2CO3 eutectic[J]. Solid State Ionics, 1983, 8(4): 319-322. |
37 | HENDERSON W A. Crystallization kinetics of Glyme-LiX and PEO-LiX polymer electrolytes[J]. Macromolecules, 2007, 40(14): 4963-4971. |
38 | NEWMAN G H, FRANCIS R W, GAINES L H, et al. Hazard investigations of LiClO4/dioxolane electrolyte[J]. Journal of the Electrochemical Society, 1980, 127(9): 2025-2027. |
39 | ROBITAILLE C D, FAUTEUX D. Phase diagrams and conductivity characterization of some PEO-LiX electrolytes[J]. Journal of the Electrochemical Society, 1986, 133(2): 315-325. |
40 | BANDARA L R A K, DISSANAYAKE M A K L, MELLANDER B E. Ionic conductivity of plasticized(PEO)-LiCF3SO3 electrolytes[J]. Electrochimica Acta, 1998, 43(10/11): 1447-1451. |
41 | SØRENSEN P R, JACOBSEN T. Phase diagram and conductivity of the polymer electrolyte: PEO_RLiCF3SO3[J]. Polymer Bulletin, 1983, 9(1/2/3): 47-51. |
42 | WESTON J E, STEELE B C H. Thermal history—conductivity relationship in lithium salt-poly (ethylene oxide) complex polymer electrolytes[J]. Solid State Ionics, 1981, 2(4): 347-354. |
43 | ANGELL C A, LIU C, SANCHEZ E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity[J]. Nature, 1993, 362(6416): 137-139. |
44 | ARAVINDAN V, GNANARAJ J, MADHAVI S, et al. Lithium-ion conducting electrolyte salts for lithium batteries[J]. Chemistry-A European Journal, 2011, 17(51): 14326-14346. |
45 | MEUSSDORFFER J N N. Bisperfluorakansulfonylimide (RfSO2)2NH[J]. Chemiker Zeitung, 1972, 96: 582. |
46 | ARMAND M, MOURSLI F E K C, Agence Nationale de Valorisation de la Recherche[R]. France. 1983. |
47 | ZHANG H, CHEN F F, CARRASCO J. Nanoscale modelling of polymer electrolytes for rechargeable batteries[J]. Energy Storage Materials, 2021, 36: 77-90. |
48 | 陈兵兵, 赵井文, 马君, 等. PEO/LITFSI固态电解质的离子传输与压力构效关系[J]. 储能科学与技术, 2018, 7(3): 431-436. |
CHEN B B, ZHAO J W, MA J, et al. Relationship of ion transport and pressure in PEO/LITFSI solid electrolytes[J]. Energy Storage Science and Technology, 2018, 7(3): 431-436. | |
49 | CHEN D D, HUANG S, ZHONG L, et al. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture[J]. Advanced Functional Materials, 2020, 30(7): doi: 10.1002/adfm.201907717. |
50 | ZHOU Q, MA J, DONG S M, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials, 2019, 31(50): doi: 10.1002/adma.201902029. |
51 | MAUREL A, ARMAND M, GRUGEON S, et al. Poly(ethylene oxide)-LiTFSI solid polymer electrolyte filaments for fused deposition modeling three-dimensional printing[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab7c38. |
52 | WANG C, ZHANG H R, DONG S M, et al. High polymerization conversion and stable high-voltage chemistry underpinning an in situ formed solid electrolyte[J]. Chemistry of Materials, 2020, 32(21): 9167-9175. |
53 | WEN B, DENG Z, TSAI P C, et al. Ultrafast ion transport at a cathode-electrolyte interface and its strong dependence on salt solvation[J]. Nature Energy, 2020, 5(8): 578-586. |
54 | XI G, XIAO M, WANG S J, et al. Polymer-based solid electrolytes: Material selection, design, and application[J]. Advanced Functional Materials, 2021, 31(9): doi: 10.1002/adfm.202007598. |
55 | ZHANG H, ARMAND M. History of solid polymer electrolyte-based solid-state lithium metal batteries: A personal account[J]. Israel Journal of Chemistry, 2021, 61(1/2): 94-100. |
56 | GORECKI W, ROUX C, CLÉMANCEY M, et al. NMR and conductivity study of polymer electrolytes in the imide family: P(EO)/Li[N(SO2CnF2 n+1)(SO2CmF2 m+1)[J]. ChemPhysChem, 2002, 3(7): 620-625. |
57 | ZHANG H, LI C M, PISZCZ M, et al. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives[J]. Chemical Society Reviews, 2017, 46(3): 797-815. |
58 | ESHETU G G, JUDEZ X, LI C M, et al. Ultrahigh performance all solid-state lithium sulfur batteries: Salt anion's chemistry-induced anomalous synergistic effect[J]. Journal of the American Chemical Society, 2018, 140(31): 9921-9933. |
59 | TONG B, WANG P, MA Q, et al. Lithium fluorinated sulfonimide-based solid polymer electrolytes for Li || LiFePO4 cell: The impact of anionic structure[J]. Solid State Ionics, 2020, 358: doi: 10.1016/j.ssi.2020.115519. |
60 | ZHANG H, FENG W F, NIE J, et al. Recent progresses on electrolytes of fluorosulfonimide anions for improving the performances of rechargeable Li and Li-ion battery[J]. Journal of Fluorine Chemistry, 2015, 174: 49-61. |
61 | HOWELLS R D, LAMANNA W M, FANTA A D, et al. Preparation of bis (fluoroalkylenesulfonyl) imides and (fluoroalkysulfony) (fluorosulfonyl) imides: US5874616[P]. 1999-02-23. |
62 | HAN H B, ZHOU Y X, LIU K, et al. Efficient preparation of (fluorosulfonyl) (pentafluoroethanesulfonyl)imide and its alkali salts[J]. Chemistry Letters, 2010, 39(5): 472-474. |
63 | HAN H B, GUO J, ZHANG D J, et al. Lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells[J]. Electrochemistry Communications, 2011, 13(3): 265-268. |
64 | APPEL R,EISENHAUER G. Die synthese des imidobisschwefelsäurefluorids, HN(SO2F)2[J]. Chemische Berichte, 1962, 95(1): 246-248. |
65 | MICHOT C, ARMAND M, SANCHEZ J Y, CHOQUETTE Y, GAUTHIER M, Ionic conducting material having good anticorrosive properties: WO 9526056A1[P].1995-09-28. |
66 | HAN H B, ZHOU S S, ZHANG D J, et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2011, 196(7): 3623-3632. |
67 | JUDEZ X, ZHANG H, LI C M, et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li-S cell[J]. The Journal of Physical Chemistry Letters, 2017, 8(9): 1956-1960. |
68 | ZHENG L P, ZHANG H, CHENG P F, et al. Li [(FSO2)(n-C4F9SO2)N]versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: A comprehensive understanding with chemical, electrochemical and XPS analysis[J]. Electrochimica Acta, 2016, 196: 169-188. |
69 | FANG Z, MA Q, LIU P, et al. Novel concentrated Li [(FSO2)(n-C4 F9 SO2)N]-based ether electrolyte for superior stability of metallic lithium anode[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4282-4289. |
70 | TONG B, HUANG J, ZHOU Z B, et al. The salt matters: Enhanced reversibility of Li-O2 batteries with a Li [(CF3SO2)(n-C4F9SO2)N]-based electrolyte[J]. Advanced Materials, 2018, 30(1): doi: 10.1002/adma.201704841. |
71 | TONG B, WANG J W, LIU Z J, et al. (CH3)3Si-N [(FSO2)(n-C4F9SO2)]: An additive for dendrite-free lithium metal anode[J]. Journal of Power Sources, 2018, 400: 225-231. |
72 | ZHOU S, HAN H, NIE J, et al. Improving the high-temperature resilience of LiMn2O4 based batteries: LiFNFSI an effective salt[J]. Journal of The Electrochemical Society, 2012, 159 (8): A1158-A1164. |
73 | SONG Z Y, WANG X X, WU H, et al. Bis(fluorosulfonyl)imide-based electrolyte for rechargeable lithium batteries: A perspective[J]. Journal of Power Sources Advances, 2022, 14: doi:10.1016/j.powera.2022.100088. |
74 | SANTIAGO A, JUDEZ X, CASTILLO J, et al. Improvement of lithium metal polymer batteries through a small dose of fluorinated salt[J]. The Journal of Physical Chemistry Letters, 2020, 11(15): 6133-6138. |
75 | GARLYAUSKAYTE R Y, BEZDUDNY A V, MICHOT C, et al. Efficient synthesis of N-(trifluoromethylsulfonyl)trifluoromethanesulfonimidoyl fluoride-the key agent in the preparation of compounds with superstrong electron-withdrawing groups and strong acidic properties[J]. J Chem Soc, Perkin Trans 1, 2002(16): 1887-1889. |
76 | GARLYAUSKAYTE R Y, CHERNEGA A N, MICHOT C, et al. Synthesis of new organic super acids—N-(trifluoromethylsulfonyl)imino derivatives of trifluoromethanesulfonic acid and bis(trifluoromethylsulfonyl)imide[J]. Organic & Biomolecular Chemistry, 2005, 3(12): 2239. |
77 | KÜTT A, RODIMA T, SAAME J, et al. Equilibrium acidities of superacids[J]. The Journal of Organic Chemistry, 2011, 76(2): 391-395. |
78 | ZHANG H, SONG Z Y, YUAN W M, et al. Impact of negative charge delocalization on the properties of solid polymer electrolytes[J]. ChemElectr℃hem, 2021, 8(7): 1322-1328. |
79 | ZHANG H, HAN H B, CHENG X R, et al. Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells: Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2015, 296: 142-149. |
80 | MA Q, ZHANG H, ZHOU C W, et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion[J]. Angewandte Chemie International Edition, 2016, 55(7): 2521-2525. |
81 | MCLIN M G, ANGELL C A. Frequency-dependent conductivity, relaxation times, and the conductivity/viscosity coupling problem, in polymer-electrolyte solutions: LiClO4 and NaCF3SO3 in PPO 4000[J]. Solid State Ionics, 1992, 53/54/55/56: 1027-1036. |
82 | ANGELL C A, FAN J, LIU C L, et al. Li-conducting ionic rubbers for lithium battery and other applications[J]. Solid State Ionics, 1994, 69(3/4): 343-353. |
83 | FORSYTH M, SUN J Z, MACFARLANE D R, et al. Compositional dependence of free volume in PAN/LiCF3SO3 polymer-in-salt electrolytes and the effect on ionic conductivity[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(2): 341-350. |
84 | WRIGHT P V. Developments in polymer electrolytes for lithium batteries[J]. MRS Bulletin, 2002, 27(8): 597-602. |
85 | ZHANG H, CHEN F F, LAKUNTZA O, et al. Suppressed mobility of negative charges in polymer electrolytes with an ether-functionalized anion[J]. Angewandte Chemie International Edition, 2019, 58(35): 12070-12075. |
86 | ZHANG H, OTEO U, ZHU H J, et al. Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion[J]. Angewandte Chemie International Edition, 2019, 58(23): 7829-7834. |
87 | ZHANG H, OTEO U, JUDEZ X, et al. Designer anion enabling solid-state lithium-sulfur batteries[J]. Joule, 2019, 3(7): 1689-1702. |
88 | QIAO L X, OTEO U, ZHANG Y, et al. Trifluoromethyl-free anion for highly stable lithium metal polymer batteries[J]. Energy Storage Materials, 2020, 32: 225-233. |
[1] | 刘如亮, 高兴远, 尹伟, 杨乃涛. PVDF-HFP基凝胶固态聚合物电解质的合成与锂离子电池性能[J]. 储能科学与技术, 2021, 10(6): 2077-2081. |
[2] | 翟艳芳, 杨冠明, 侯望墅, 姚建尧, 温兆银, 宋树丰, 胡宁. 溶剂热法合成三维花瓣状石榴石型固态电解质及其在固态聚合物电解质中的应用[J]. 储能科学与技术, 2021, 10(3): 905-913. |
[3] | 吴勰, 周莉, 薛照明. 基于螯合B类锂盐的固态聚合物电解质的合成及其性能[J]. 储能科学与技术, 2021, 10(1): 96-103. |
[4] | 张建军, 董甜甜, 杨金凤, 张敏, 崔光磊. 全固态聚合物锂电池的科研进展、挑战与展望[J]. 储能科学与技术, 2018, 7(5): 861-868. |
[5] | 陈婉琦,张 旺,尹 微,王 朵,沈 越,黄云辉. 无机熔融盐电解质在锂空气电池的应用[J]. 储能科学与技术, 2017, 6(6): 1273-. |
[6] | 段 惠1,2,殷雅侠1,2,郭玉国1,2,万立骏1,2. 固态金属锂电池最新进展评述[J]. 储能科学与技术, 2017, 6(5): 941-951. |
[7] | 杜奥冰,柴敬超,张建军,刘志宏,崔光磊. 锂电池用全固态聚合物电解质的研究进展[J]. 储能科学与技术, 2016, 5(5): 627-648. |
[8] | 马 强1,2,戚兴国1,容晓晖1,胡勇胜1,周志彬2,李 泓1,陈立泉1,黄学杰1. 新型固态聚合物电解质在锂硫电池中的研究[J]. 储能科学与技术, 2016, 5(5): 713-718. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||