1 |
HAN A L, ZHANG Z D, YANG J R, et al. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions[J]. Small, 2021, 17(16): doi: 10.1002/smll.202004500.
|
2 |
QIAO Z, HWANG S, LI X, et al. 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: A balance between graphitization and hierarchical porosity[J]. Energy & Environmental Science, 2019, 12(9): 2830-2841.
|
3 |
HAIDER R, WEN Y C, MA Z F, et al. High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies[J]. Chemical Society Reviews, 2021, 50(2): 1138-1187.
|
4 |
GAO W B, LIU T T, ZHANG Z P, et al. Stabilization of Pt nanoparticles at the Ta2O5-TaC binary junction: An effective strategy to achieve high durability for oxygen reduction[J]. Journal of Materials Chemistry A, 2020, 8(11): 5525-5534.
|
5 |
SHI Q R, ZHU C Z, DU D, et al. Robust noble metal-based electrocatalysts for oxygen evolution reaction[J]. Chemical Society Reviews, 2019, 48(12): 3181-3192.
|
6 |
HU Y Z, LU Y, ZHAO X R, et al. Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction[J]. Nano Research, 2020, 13(9): 2365-2370.
|
7 |
TIAN N, ZHOU Z Y, SUN S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 732-735.
|
8 |
WANG G Z, YANG Z Z, DU Y G, et al. Programmable exposure of Pt active facets for efficient oxygen reduction[J]. Angewandte Chemie International Edition, 2019, 58(44): 15848-15854.
|
9 |
YANG Y, XIAO W P, FENG X R, et al. Golden palladium zinc ordered intermetallics as oxygen reduction electrocatalysts[J]. ACS Nano, 2019, 13(5): 5968-5974.
|
10 |
KONG Z J, MASWADEH Y, VARGAS J A, et al. Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions[J]. Journal of the American Chemical Society, 2020, 142(3): 1287-1299.
|
11 |
GONG M X, DENG Z P, XIAO D D, et al. One-nanometer-thick Pt3Ni bimetallic alloy nanowires advanced oxygen reduction reaction: Integrating multiple advantages into one catalyst[J]. ACS Catalysis, 2019, 9(5): 4488-4494.
|
12 |
BU L Z, ZHANG N, GUO S J, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis[J]. Science, 2016, 354(6318): 1410-1414.
|
13 |
GONG M X, XIAO D D, DENG Z P, et al. Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction[J]. Applied Catalysis B: Environmental, 2021, 282: doi: 10.1016/j.apcatb.2020.119617.
|
14 |
ZANA A, SPEDER J, REELER N E A, et al. Investigating the corrosion of high surface area carbons during start/stop fuel cell conditions: A Raman study[J]. Electrochimica Acta, 2013, 114: 455-461.
|
15 |
YANG Z, BALL S, CONDIT D, et al. Systematic study on the impact of Pt particle size and operating conditions on PEMFC cathode catalyst durability[J]. Journal of the Electrochemical Society, 2011, 158(11): B1439.
|
16 |
ZHOU Q Q, SHI G Q. Conducting polymer-based catalysts[J]. Journal of the American Chemical Society, 2016, 138(9): 2868-2876.
|
17 |
LIU Y, LU N, POYRAZ S, et al. One-pot formation of multifunctional Pt-conducting polymer intercalated nanostructures[J]. Nanoscale, 2013, 5(9): 3872-3879.
|
18 |
MIZUHATA M, OGA M, DEKI S. Preparation of Pt/polypyrrole loaded carbon composite in order to improve electrode durability for fuel cells[J]. ECS Transactions, 2007, 2(8): 63-72.
|
19 |
CHEN S G, WEI Z D, QI X Q, et al. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity[J]. Journal of the American Chemical Society, 2012, 134(32): 13252-13255.
|
20 |
TAKENAKA S, MATSUMORI H, NAKAGAWA K, et al. Improvement in the durability of Pt electrocatalysts by coverage with silica layers[J]. The Journal of Physical Chemistry C, 2007, 111(42): 15133-15136.
|
21 |
TAKENAKA S, MIYAMOTO H, UTSUNOMIYA Y, et al. Catalytic activity of highly durable Pt/CNT catalysts covered with hydrophobic silica layers for the oxygen reduction reaction in PEFCs[J]. The Journal of Physical Chemistry C, 2014, 118(2): 774-783.
|
22 |
AOKI N, INOUE H, KAWASAKI H, et al. Durability improvement of Pd core-Pt shell structured catalyst by porous SiO2 coating[J]. Journal of the Electrochemical Society, 2018, 165(10): F737-F747.
|
23 |
LI W, DING W, NIE Y, et al. Enhancing the stability and activity by anchoring Pt nanoparticles between the layers of etched montmorillonite for oxygen reduction reaction[J]. Science Bulletin, 2016, 61(18): 1435-1439.
|
24 |
ANDO F, GUNJI T K, TANABE T, et al. Enhancement of the oxygen reduction reaction activity of Pt by tuning its d-band center via transition metal oxide support interactions[J]. ACS Catalysis, 2021, 11(15): 9317-9332.
|
25 |
CHENG N C, BANIS M N, LIU J, et al. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction[J]. Advanced Materials, 2015, 27(2): 277-281.
|
26 |
KANG S, XIA F, HU Z F, et al. Platinum nanoparticles with TiO2-skin as a durable catalyst for photoelectrochemical methanol oxidation and electrochemical oxygen reduction reactions[J]. Electrochimica Acta, 2020, 343: doi: 10.1016/j.electacta.2020.136119.
|
27 |
KIM J, LEE Y, SUN S H. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction[J]. Journal of the American Chemical Society, 2010, 132(14): 4996-4997.
|
28 |
XIAO W P, LIUTHEVICIENE CORDEIRO M A, GONG M X, et al. Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size[J]. Journal of Materials Chemistry A, 2017, 5(20): 9867-9872.
|
29 |
WEN Z, LIU J, LI J. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells[J]. Advanced Materials, 2008, 20(4): 743-747.
|
30 |
NIE Y, CHEN S G, DING W, et al. Pt/C trapped in activated graphitic carbon layers as a highly durable electrocatalyst for the oxygen reduction reaction[J]. Chemical Communications (Cambridge, England), 2014, 50(97): 15431-15434.
|
31 |
TAN J L, XIE Z, ZHANG Z, et al. Dopamine modified polyaniline with improved adhesion, dispersibility, and biocompatibility[J]. Journal of Materials Science, 2018, 53(1): 447-455.
|
32 |
CHUNG D Y, JUN S W, YOON G, et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction[J]. Journal of the American Chemical Society, 2015, 137(49): 15478-15485.
|
33 |
SUN K, LI J, WANG F, et al. Highly enhanced durability of a graphitic carbon layer decorated PtNi3 alloy electrocatalyst toward the oxygen reduction reaction[J]. Chemical Communications (Cambridge, England), 2019, 55(40): 5693-5696.
|
34 |
YING J, LI J, JIANG G P, et al. Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction[J]. Applied Catalysis B: Environmental, 2018, 225: 496-503.
|
35 |
JOO S H, CHOI S J, OH I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature, 2001, 412 (6843): 169-172.
|
36 |
GALEANO C, MEIER J C, PEINECKE V, et al. Toward highly stable electrocatalysts via nanoparticle pore confinement[J]. Journal of the American Chemical Society, 2012, 134(50): 20457-20465.
|
37 |
GALEANO C, BALDIZZONE C, BONGARD H, et al. Carbon-based yolk-shell materials for fuel cell applications[J]. Advanced Functional Materials, 2014, 24(2): 220-232.
|
38 |
ZHAO W Y, YE Y K, JIANG W J, et al. Mesoporous carbon confined intermetallic nanoparticles as highly durable electrocatalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2020, 8(31): 15822-15828.
|
39 |
WU Z X, LV Y Y, XIA Y Y, et al. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst[J]. Journal of the American Chemical Society, 2012, 134(4): 2236-2245.
|
40 |
JIANG X, WANG J X, HUANG T, et al. Sub-5 nm palladium nanoparticles in situ embedded in N-doped carbon nanoframes: Facile synthesis, excellent sinter resistance and electrocatalytic properties[J]. Journal of Materials Chemistry A, 2019, 7(46): 26243-26249.
|
41 |
GUO L, JIANG W J, ZHANG Y, et al. Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction[J]. ACS Catalysis, 2015, 5(5): 2903-2909.
|
42 |
KARUPPANNAN M, KIM Y, GOK S, et al. A highly durable carbon-nanofiber-supported Pt-C core-shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: Facile carbon encapsulation[J]. Energy & Environmental Science, 2019, 12(9): 2820-2829.
|
43 |
HU Y Z, SHEN T, ZHAO X R, et al. Combining structurally ordered intermetallics with N-doped carbon confinement for efficient and anti-poisoning electrocatalysis[J]. Applied Catalysis B: Environmental, 2020, 279: doi: 10.1016/j.apcatb.2020.119370.
|
44 |
HU Y Z, ZHANG J J, SHEN T, et al. A low-temperature carbon encapsulation strategy for stable and poisoning-tolerant electrocatalysts[J]. Small Methods, 2021, 5(11): doi: 10.1002/smtd.202100937.
|