1 |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
|
2 |
ZHANG S, ZHANG J. Fatigue and its effect on the mechanical and thermal transport properties of polycrystalline graphene[J]. Journal of Materials Science, 2021, 56(17): 10367-10381.
|
3 |
SLOTA M, KEERTHI A, MYERS W K, et al. Magnetic edge states and coherent manipulation of graphene nanoribbons[J]. Nature, 2018, 557(7707): 691-695.
|
4 |
NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.
|
5 |
GHOSH S, CALIZO I, TEWELDEBRHAN D, et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits[J]. Applied Physics Letters, 2008, 92(15): 151911.
|
6 |
WU R, ZHU R Z, ZHAO S H, et al. Filling the gap: Thermal properties and device applications of graphene[J]. Science China-Information Sciences, 2021, 64(4): 140401.
|
7 |
ZHUO L Q, FAN P P, ZHANG S, et al. High-performance fiber-integrated multifunctional graphene-optoelectronic device with photoelectric detection and optic-phase modulation[J]. Photonics Research, 2020, 8(12): 1949.
|
8 |
WANG R R, MAO Y, WANG L, et al. Solution-gated graphene transistor based sensor for histamine detection with gold nanoparticles decorated graphene and multi-walled carbon nanotube functionalized gate electrodes[J]. Food Chemistry, 2021, 347: 128980.
|
9 |
JING P, WANG Q, WANG B Y, et al. Encapsulating yolk-shell FeS2@carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage[J]. Carbon, 2020, 159: 366-377.
|
10 |
KRASAVIN S E, OSIPOV V A. Effect of Stone-Wales defects on the thermal conductivity of graphene[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2015, 27(42): 425302.
|
11 |
DAMASCENO D A, RAJAPAKSE R K N D, MESQUITA E, et al. Atomistic simulation of tensile strength properties of graphene with complex vacancy and topological defects[J]. Acta Mechanica, 2020, 231(8): 3387-3404.
|
12 |
WANG J F, XIE H Q, GUO Z X. First-principles investigation on thermal properties and infrared spectra of imperfect graphene[J]. Applied Thermal Engineering, 2017, 116: 456-462.
|
13 |
LIU D J, YANG P, YUAN X, et al. The defect location effect on thermal conductivity of graphene nanoribbons based on molecular dynamics[J]. Physics Letters A, 2015, 379(9): 810-814.
|
14 |
YANG B, LI D B, YANG H Y, et al. Thermal conductivity enhancement of defective graphene nanoribbons[J]. International Communications in Heat and Mass Transfer, 2020, 117: 104735.
|
15 |
SUN R, LI L L, FENG C, et al. Tensile behavior of polymer nanocomposite reinforced with graphene containing defects[J]. European Polymer Journal, 2018, 98: 475-482.
|
16 |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
|
17 |
LINDSAY L, BROIDO D A. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene[J]. Physical Review B, 2010, 81(20): 205441.
|
18 |
YANG B W, HAN D, WANG X Y, et al. Molecular dynamic simulation of thermal transport in monolayer C3BxN1– x alloy[J]. Nanotechnology, 2020, 31(18): 185404.
|
19 |
吴霜, 王继芬, 王绪哲, 等. 石墨烯纳米带导热的分子动力学模拟[J]. 上海第二工业大学学报, 2019, 36(4): 269-274.
|
|
WU S, WANG J F, WANG X Z, et al. Thermal conductivity of graphene nanoribbons by molecular dynamics simulations[J]. Journal of Shanghai Polytechnic University, 2019, 36(4): 269-274.
|
20 |
ZHANG Y Y, CHENG Y, PEI Q X, et al. Thermal conductivity of defective graphene[J]. Physics Letters A, 2012, 376(47/48): 3668-3672.
|
21 |
LI Z, XIONG S Y, SIEVERS C, et al. Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids[J]. The Journal of Chemical Physics, 2019, 151(23): 234105.
|
22 |
唐恺. 石墨烯热学特性的分子动力学模拟[D]. 武汉: 华中科技大学, 2015.
|
|
TANG K. Molecular dynamics simulations on thermal properties of graphene[D]. Wuhan: Huazhong University of Science and Technology, 2015.
|
23 |
李婷. 石墨烯和六方氮化硼界面热特性的研究[D]. 大连: 大连理工大学, 2018.
|
|
LI T. A study on the interfacial thermal performance of graphene and hexagonal boron nitride[D]. Dalian: Dalian University of Technology, 2018.
|
24 |
SCHELLING P K, PHILLPOT S R, KEBLINSKI P. Comparison of atomic-level simulation methods for computing thermal conductivity[J]. Physical Review B, 2002, 65(14): 144306.
|
25 |
WU X S, TANG W T, XU X F, et al. Recent progresses of thermal conduction in two-dimensional materials[J]. Acta Physica Sinica, 2020, 69(19): 196602.
|
26 |
MORTAZAVI B, AHZI S. Thermal conductivity and tensile response of defective graphene: A molecular dynamics study[J]. Carbon, 2013, 63: 460-470.
|
27 |
HAO F, FANG D N, XU Z P. Mechanical and thermal transport properties of graphene with defects[J]. Applied Physics Letters, 2011, 99(4): 041901.
|
28 |
LIANG T, ZHOU M, ZHANG P, et al. Multilayer in-plane graphene/hexagonal boron nitride heterostructures: Insights into the interfacial thermal transport properties[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119395.
|
29 |
CHEN J, WALTHER J H, KOUMOUTSAKOS P. Strain engineering of kapitza resistance in few-layer graphene[J]. Nano Letters, 2014, 14(2): 819-825.
|
30 |
SONG J R, XU Z H, HE X D, et al. Thermal conductivity of two-dimensional BC3: A comparative study with two-dimensional C3N[J]. Physical Chemistry Chemical Physics, 2019, 21(24): 12977-12985.
|
31 |
YE Z Q, CAO B Y, GUO Z Y, et al. Study on thermal characteristics of phonons in graphene[J]. Acta Physica Sinica, 2014, 63(15): 154704.
|