1 |
YANG B, DING W L, ZHANG H H, et al. Recent progress in electrochemical synthesis of ammonia from nitrogen: Strategies to improve the catalytic activity and selectivity[J]. Energy & Environmental Science, 2021, 14(2): 672-687.
|
2 |
YAO Y, WANG J, SHAHID U B, et al. Electrochemical synthesis of ammonia from nitrogen under mild conditions: Current status and challenges[J]. Electrochemical Energy Reviews, 2020, 3(2): 239-270.
|
3 |
KYRIAKOU V, GARAGOUNIS I, VASILEIOU E, et al. Progress in the electrochemical synthesis of ammonia[J]. Catalysis Today, 2017, 286: 2-13.
|
4 |
QING G, GHAZFAR R, JACKOWSKI S T, et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia[J]. Chemical Reviews, 2020, 120(12): 5437-5516.
|
5 |
GUO D X, WANG S, XU J, et al. Defect and interface engineering for electrochemical nitrogen reduction reaction under ambient conditions[J]. Journal of Energy Chemistry, 2022, 65: 448-468.
|
6 |
CAO N, ZHENG G F. Aqueous electrocatalytic N2 reduction under ambient conditions[J]. Nano Research, 2018, 11(6): 2992-3008.
|
7 |
练文超, 雷励斌, 梁波, 等. 质子导体固体氧化物电化学装置中氨的利用与合成[J]. 储能科学与技术, 2021, 10(6): 1998-2007.
|
|
LIAN W C, LEI L B, LIANG B, et al. Utilization and synthesis of ammonia in proton-conducting solid oxide electrochemical devices[J]. Energy Storage Science and Technology, 2021, 10(6): 1998-2007.
|
8 |
WANG Z Q, LI Y H, YU H J, et al. Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower-like gold microstructures[J]. ChemSusChem, 2018, 11(19): 3480-3485.
|
9 |
CHEN C, LIANG C, XU J, et al. Size-dependent electrochemical nitrogen reduction catalyzed by monodisperse Au nanoparticles[J]. Electrochimica Acta, 2020, 335:doi:10.1016/j.electacta.2020.135708.
|
10 |
HUANG H H, XIA L, SHI X F, et al. Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions[J]. Chemical Communications (Cambridge, England), 2018, 54(81): 11427-11430.
|
11 |
ZHANG W Q, YANG L T, AN C H, et al. Enhancing electrochemical nitrogen reduction with Ru nanowires via the atomic decoration of Pt[J]. Journal of Materials Chemistry A, 2020, 8(47): 25142-25147.
|
12 |
SIM H Y F, CHEN J R T, KOH C S L, et al. ZIF-induced d-band modification in a bimetallic nanocatalyst: Achieving over 44% efficiency in the ambient nitrogen reduction reaction[J]. Angewandte Chemie International Edition, 2020, 59(39): 16997-17003.
|
13 |
WANG H Y, CHEN Y Z, FAN R X, et al. Selective electrochemical reduction of nitrogen to ammonia by adjusting the three-phase interface[J]. Research (Washington, D C), 2019, 2019:doi:10.34133/2019/1401209.
|
14 |
YANG C Y, HUANG B L, BAI S X, et al. A generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals[J]. Advanced Materials, 2020, 32(24):doi:10.1002/adma.2001267.
|
15 |
LIN Y X, ZHANG S N, XUE Z H, et al. Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles[J]. Nature Communications, 2019, 10: 4380.
|
16 |
LI C, ZHANG S B, DING Z H, et al. Copper nanocrystals anchored on an O-rich carbonized corn gel for nitrogen electroreduction to ammonia[J]. Inorganic Chemistry Frontiers, 2020, 7(19): 3555-3560.
|
17 |
LIU A M, LIANG X Y, YANG Q Y, et al. Metal-organic-framework-derived cobalt-doped carbon material for electrochemical ammonia synthesis under ambient conditions[J]. ChemElectroChem, 2020, 7(24): 4900-4905.
|
18 |
SKÚLASON E, BLIGAARD T, GUDMUNDSDÓTTIR S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry Chemical Physics: PCCP, 2012, 14(3): 1235-1245.
|
19 |
AHMED M I, LIU C W, ZHAO Y, et al. Metal-sulfur linkages achieved by organic tethering of ruthenium nanocrystals for enhanced electrochemical nitrogen reduction[J]. Angewandte Chemie, 2020, 132(48): 21649-21653.
|
20 |
SURYANTO B H R, WANG D B, AZOFRA L M, et al. MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia[J]. ACS Energy Letters, 2019, 4(2): 430-435.
|
21 |
LIU A M, GAO M F, REN X F, et al. A two-dimensional Ru@MXene catalyst for highly selective ambient electrocatalytic nitrogen reduction[J]. Nanoscale, 2020, 12(20): 10933-10938.
|
22 |
SINGH A R, ROHR B A, STATT M J, et al. Strategies toward selective electrochemical ammonia synthesis[J]. ACS Catalysis, 2019, 9(9): 8316-8324.
|
23 |
GENG Z G, LIU Y, KONG X D, et al. Achieving a record-high yield rate of 120.9 for N2 electrochemical reduction over Ru single-atom catalysts[J]. Advanced Materials, 2018, 30(40):doi:10.1022/adma.20181803498.
|
24 |
YU B, LI H, WHITE J, et al. Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion[J]. Advanced Functional Materials, 2020, 30(6):doi:10.1002/adfm.201905665.
|
25 |
TAO H C, CHOI C, DING L X, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction[J]. Chem, 2019, 5(1): 204-214.
|
26 |
ZHANG Y, ZHANG Q, LIU D X, et al. High spin polarization ultrafine Rh nanoparticles on CNT for efficient electrochemical N2 fixation to ammonia[J]. Applied Catalysis B: Environmental, 2021, 298:doi:10.1016/j.apcatb.2021.120592.
|
27 |
赵悠曼, 严小波, 段红坤, 等. 碳纳米管导电剂对硅碳负极锂电池性能提升的探索[J]. 储能科学与技术, 2021, 10(1): 118-127.
|
|
ZHAO Y M, YAN X B, DUAN H K, et al. Exploring mechanism of carbon nanotubes as conductive agent for improving performance of a silicon/carbon anode in LIB[J]. Energy Storage Science and Technology, 2021, 10(1): 118-127.
|
28 |
CHEN S M, PERATHONER S, AMPELLI C, et al. Direct synthesis of ammonia from N2 and H2O on different iron species supported on carbon nanotubes using a gas-phase electrocatalytic flow reactor[J]. ChemElectroChem, 2020, 7(14): 3028-3037.
|
29 |
WEN J, CHANG H H, HUANG T, et al. A simple synthesis of Co3O4@CNT to boost electrochemical nitrogen fixation[J]. Electrochimica Acta, 2021, 367:doi:10.1016/j.electacta.2020.137421.
|
30 |
ZHAO X, YANG Z Q, KUKLIN A V, et al. Efficient ambient electrocatalytic ammonia synthesis by nanogold triggered via boron clusters combined with carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42821-42831.
|
31 |
ROSSETTI I, FORNI L. Effect of Ru loading and of Ru precursor in Ru/C catalysts for ammonia synthesis[J]. Applied Catalysis A: General, 2005, 282(1/2): 315-320.
|
32 |
BOCK C, PAQUET C, COUILLARD M, et al. Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism[J]. Journal of the American Chemical Society, 2004, 126(25): 8028-8037.
|
33 |
WANG D B, AZOFRA L M, HARB M, et al. Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions[J]. ChemSusChem, 2018, 11(19): 3356.
|
34 |
FAN Q, CHOI C, YAN C, et al. High-yield production of few-layer boron nanosheets for efficient electrocatalytic N2 reduction[J]. Chemical Communications (Cambridge, England), 2019, 55(29): 4246-4249.
|
35 |
HU C, LIANG S C, BAI S L, et al. Silica-assisted fabrication of N-doped porous carbon for efficient electrocatalytic nitrogen fixation[J]. ChemCatChem, 2020, 12(13): 3453-3458.
|
36 |
CHEN C, LIU Y, YAO Y. Ammonia synthesis via electrochemical nitrogen reduction reaction on iron molybdate under ambient conditions[J]. European Journal of Inorganic Chemistry, 2020, 2020(34): 3236-3241.
|
37 |
HU X M, SUN Y T, GUO S Y, et al. Identifying electrocatalytic activity and mechanism of Ce1/3NbO3 perovskite for nitrogen reduction to ammonia at ambient conditions[J]. Applied Catalysis B: Environmental, 2021, 280:doi:10.1016/j.apcatb.2020.119419.
|
38 |
ZHANG S, DUAN G Y, QIAO L L, et al. Electrochemical ammonia synthesis from N2 and H2O catalyzed by doped LaFeO3 perovskite under mild conditions[J]. Industrial & Engineering Chemistry Research, 2019, 58(20): 8935-8939.
|