1 |
黎可, 穆居易, 金翼, 等. 磷酸铁锂电池火灾危险性[J]. 储能科学与技术, 2021, 10(3): 1177-1186.
|
|
LI K, MU J Y, JIN Y, et al. Fire risk of lithium iron phosphate battery[J]. Energy Storage Science and Technology, 2021, 10(3): 1177-1186.
|
2 |
喻航, 张英, 徐超航, 等.锂电储能系统热失控防控技术研究进展[J/OL]. 储能科学与技术, 2022. [2022-06-29]. https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2022.0116.
|
|
YU H, ZHANG Y, XU C H, et al. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems[J/OL]. Energy Storage Science and Technology, 2022. [2022-06-29]. https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2022.0116.
|
3 |
陈天雨, 高尚, 冯旭宁, 等. 锂离子电池热失控蔓延研究进展[J]. 储能科学与技术, 2018, 7(6): 1030-1039.
|
|
CHEN T Y, GAO S, FENG X N, et al. Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1030-1039.
|
4 |
HECHT C, VICTOR K, ZURMÜHLEN S, et al. Electric vehicle route planning using real-world charging infrastructure in Germany[J]. eTransportation, 2021, 10: doi: 10.1016/j.etran.2021.100143.
|
5 |
FENG X N, XU C S, HE X M, et al. Mechanisms for the evolution of cell variations within a LiNixCoyMnzO2/graphite lithium-ion battery pack caused by temperature non-uniformity[J]. Journal of Cleaner Production, 2018, 205: 447-462.
|
6 |
XU C S, ZHANG F S, FENG X N, et al. Experimental study on thermal runaway propagation of lithium-ion battery modules with different parallel-series hybrid connections[J]. Journal of Cleaner Production, 2021, 284: doi: 10.1016/j.jclepro.2020.124749.
|
7 |
XIE W L, LIU X H, HE R, et al. Challenges and opportunities toward fast-charging of lithium-ion batteries[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101837.
|
8 |
LARSSON F, ANDERSSON P, BLOMQVIST P, et al. Toxic fluoride gas emissions from lithium-ion battery fires[J]. Scientific Reports, 2017, 7: doi: 10.1038/s41598-017-09784-z.
|
9 |
黎华玲, 唐贤文, 邵丹, 等.锂离子电池热失控气体研究进展[J/OL].电池, 2022: 1-5. [2022-06-29]. http://kns.cnki.net/kcms/detail/43.1129.TM.20220530.1758.021.html.
|
10 |
马彪, 林春景, 刘磊, 等. 锂离子电池热失控产气特性及其可燃极限[J]. 储能科学与技术, 2022, 11(5): 1592-1600.
|
|
MA B, LIN C J, LIU L, et al. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery[J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600.
|
11 |
蔡晶菁. 锂离子电池储能电站火灾防控技术研究综述[J]. 消防科学与技术, 2022, 41(4): 472-477.
|
|
CAI J J. Review on the fire prevention and control technology for lithium-ion battery energy storage power station[J]. Fire Science and Technology, 2022, 41(4): 472-477.
|
12 |
FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770.
|
13 |
CHEN Y H, TANG Z Y, LU X H, et al. Research of explosion mechanism of lithium-ion battery[J]. Progress in Chemistry, 2006, 18: 823.
|
14 |
SAID A O, LEE C, STOLIAROV S I. Experimental investigation of cascading failure in 18650 lithium ion cell arrays: Impact of cathode chemistry[J]. Journal of Power Sources, 2020, 446: doi: 10.1016/j.jpowsour.2019.227347.
|
15 |
MACDONALD M P, CHANDRASEKARAN S, GARIMELLA S, et al. Thermal runaway in a prismatic lithium ion cell triggered by a short circuit[J]. Journal of Energy Storage, 2021, 40: doi: 10.1016/j.est.2021.102737.
|
16 |
GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642.
|
17 |
BAIRD A R, ARCHIBALD E J, MARR K C, et al. Explosion hazards from lithium-ion battery vent gas[J]. Journal of Power Sources, 2020, 446: doi: 10.1016/j.jpowsour.2019.227257.
|
18 |
QIN P, JIA Z Z, WU J Y, et al. The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes[J]. Applied Energy, 2022, 313: doi: 10.1016/j.apenergy.2022.118767.
|
19 |
ZHANG L, DUAN Q L, MENG X D, et al. Experimental investigation on intermittent spray cooling and toxic hazards of lithium-ion battery thermal runaway[J]. Energy Conversion and Management, 2022, 252: doi: 10.1016/j.enconman.2021.115091.
|
20 |
MENG X D, LI S, FU W D, et al. Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires[J]. eTransportation, 2022, 11: doi: 10.1016/j.etran.2021.100142.
|
21 |
ZOU K Y, CHEN X, DING Z W, et al. Jet behavior of prismatic lithium-ion batteries during thermal runaway[J]. Applied Thermal Engineering, 2020, 179: doi: 10.1016/j.applthermaleng.2020.115745.
|
22 |
JIN Y, ZHAO Z X, MIAO S, et al. Explosion hazards study of grid-scale lithium-ion battery energy storage station[J]. Journal of Energy Storage, 2021, 42: doi: 10.1016/j.est.2021.102987.
|
23 |
ZHANG Y J, WANG H W, LI W F, et al. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries[J]. eTransportation, 2019, 2: doi: 10.1016/j.etran.2019.100031.
|
24 |
YUAN S, CHANG C Y, ZHANG J Q, et al. Experimental investigation of a micelle encapsulator F-500 on suppressing lithium ion phosphate batteries fire and rapid cooling[J]. Journal of Loss Prevention in the Process Industries, 2022: doi: 10.1016/j.jlp.2022.104816.
|
25 |
MAO B B, ZHAO C P, CHEN H D, et al. Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery[J]. Applied Energy, 2021, 281: doi: 10.1016/j.apenergy.2020.116054.
|